Probing nonlinear rheology layer-by-layer in interfacial hydration water.
نویسندگان
چکیده
Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.
منابع مشابه
The Hydration Structure at Yttria-Stabilized Cubic Zirconia (110)-Water Interface with Sub-Ångström Resolution
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic o...
متن کاملInterfacial Layer Properties of a Polyaromatic Compound and its Role in Stabilizing Water-in-Oil Emulsions.
Physical properties of interfacial layers formed at the xylene-water interface by the adsorption of a polyaromatic organic compound, N-(1-hexylheptyl)-N'-(5-carbonylicpentyl) perylene-3,4,9,10-tetracarboxylic bisimide (in brief, C5Pe), were studied systematically. The deprotonation of the carboxylic group of C5Pe at alkaline pH made it highly interfacially active, significantly reducing the xyl...
متن کاملEffects of hydration water on protein methyl group dynamics in solution.
Elastic and quasielastic neutron scattering experiments have been used to investigate the dynamics of methyl groups in a protein-model hydrophobic peptide in solution. The results suggest that, when the hydrophobic side chains are hydrated by a single hydration water layer, the only allowed motions are confined and attributed to librational and rotational movement associated with the methyl gro...
متن کاملAnisotropy in the dielectric spectrum of hydration water and its relation to water dynamics.
Proteins, molecules, and macromolecular assemblies in water are surrounded by a nanometer-sized hydration layer with properties very different from bulk water. Here, we use classical molecular dynamics simulations to study the dielectric response of hydration water next to hydrophobic and hydrophilic planar surfaces. We find the interfacial dielectric absorption of water to be strongly anisotro...
متن کاملpH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.
Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 51 شماره
صفحات -
تاریخ انتشار 2015