Use of a Multi - Layer Perceptron toPredict Malignancy in Ovarian TumorsHerman
نویسندگان
چکیده
We discuss the development of a Multi-Layer Perceptron neural network classiier for use in preoperative diierentiation between benign and malignant ovarian tumors. As the Mean Squared clas-siication Error is not suucient to make correct and objective assessments about the performance of the neural classiier, the concepts of sensitivity and speciicity are introduced and combined in Receiver Operating Characteristic curves. Based on objective observations such as sonomorphologic criteria, color Doppler imaging and results from serum tumor markers, the neural network is able to make reliable predictions with a discriminating performance comparable to that of experienced gynecologists.
منابع مشابه
Performance comparison of land change modeling techniques for land use projection of arid watersheds
The change of land use/land cover has been known as an imperative force in environmental alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of two major types of land change modeling techniques via a three dimensional approach in Birjand urban watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suit...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملNew full adders using multi-layer perceptron network
How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملOvarian Cancer Classification with Missing Data
Unlike for other types of cancers, there are no tests suitable for mass screening that will reliably detect cases of ovarian cancer. The most commonly used test in clinical environments is the test for the tumour marker CA 125, with an accuracy of only up to 70%. Research so far has mostly focused on predicting the risk of malignancy of pelvic masses, using operator-dependent ultrasound charact...
متن کامل