Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells.

نویسندگان

  • Prattana Samasilp
  • Kyle Lopin
  • Shyue-An Chan
  • Rajesh Ramachandran
  • Corey Smith
چکیده

Adrenal neuroendocrine chromaffin cells receive excitatory synaptic input from the sympathetic nervous system and secrete hormones into the peripheral circulation. Under basal sympathetic tone, modest amounts of freely soluble catecholamine are selectively released through a restricted fusion pore formed between the secretory granule and the plasma membrane. Upon activation of the sympathoadrenal stress reflex, elevated stimulation drives fusion pore expansion, resulting in increased catecholamine secretion and facilitating release of copackaged peptide hormones. Thus regulated expansion of the secretory fusion pore is a control point for differential hormone release of the sympathoadrenal stress response. Previous work has shown that syndapin 1 deletion alters transmitter release and that the dynamin 1-syndapin 1 interaction is necessary for coupled endocytosis in neurons. Dynamin has also been shown to be involved in regulation of fusion pore expansion in neuroendocrine chromaffin cells through an activity-dependent association with syndapin. However, it is not known which syndapin isoform(s) contributes to pore dynamics in neuroendocrine cells. Nor is it known at what stage of the secretion process dynamin and syndapin associate to modulate pore expansion. Here we investigate the expression and localization of syndapin isoforms and determine which are involved in mediating fusion pore expansion. We show that all syndapin isoforms are expressed in the adrenal medulla. Mutation of the SH3 dynamin-binding domain of all syndapin isoforms shows that fusion pore expansion and catecholamine release are limited specifically by mutation of syndapin 3. The mutation also disrupts targeting of syndapin 3 to the cell periphery. Syndapin 3 exists in a persistent colocalized state with dynamin 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells.

Neuroendocrine chromaffin cells selectively secrete a variety of transmitter molecules into the circulation as a function of sympathetic activation. Activity-dependent release of transmitter species is controlled through regulation of the secretory fusion pore. Under sympathetic tone, basal synaptic excitation drives chromaffin cells to selectively secrete modest levels of catecholamine through...

متن کامل

Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells.

Adrenal medullary chromaffin cells release catecholamines and neuropeptides in an activity-dependent manner controlled by the sympathetic nervous system. Under basal sympathetic tone, catecholamines are preferentially secreted. During acute stress, increased sympathetic firing evokes release of both catecholamines as well as neuropeptides. Both signalling molecules are co-packaged in the same l...

متن کامل

Push-and-pull regulation of the fusion pore by synaptotagmin-7.

In chromaffin cells, Ca(2+) binding to synaptotagmin-1 and -7 triggers exocytosis by promoting fusion pore opening and fusion pore expansion. Synaptotagmins contain two C2 domains that both bind Ca(2+) and contribute to exocytosis; however, it remains unknown whether the C2 domains act similarly or differentially to promote opening and expansion of fusion pores. Here, we use patch amperometry m...

متن کامل

Myosin II contributes to fusion pore expansion during exocytosis.

During exocytosis, the fusion pore expands to allow release of neurotransmitters and hormones to the extracellular space. To understand the process of synaptic transmission, it is of outstanding importance to know the properties of the fusion pore and how these properties affect the release process. Many proteins have been implicated in vesicle fusion; however, there is little evidence for prot...

متن کامل

Src Kinases Regulate De Novo Actin Polymerization during Exocytosis in Neuroendocrine Chromaffin Cells

The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 306 9  شماره 

صفحات  -

تاریخ انتشار 2014