Brønsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces

نویسنده

  • B. F. Svaiter
چکیده

In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Brønsted-Rockafellar type property. 2000 Mathematics Subject Classification: 47H05, 49J52, 47N10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces

We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....

متن کامل

Construction of pathological maximally monotone operators on non-reflexive Banach spaces

In this paper, we construct maximally monotone operators that are not of Gossez’s dense-type (D) in many nonreflexive spaces. Many of these operators also fail to possess the Brønsted-Rockafellar (BR) property. Using these operators, we show that the partial inf-convolution of two BC–functions will not always be a BC–function. This provides a negative answer to a challenging question posed by S...

متن کامل

Somme Ponctuelle D’opérateurs Maximaux Monotones

The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graphconvergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Cr...

متن کامل

Variational Principles for Monotone and Maximal Bifunctions

We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces. As applications, we give an existence result of saddle point for convex-concave function and solve an approximate inclusion governed by a maximal monotone operator.

متن کامل

Maximal monotonicity, conjugation and the duality product in non-reflexive Banach spaces

Maximal monotone operators on a Banach space into its dual can be represented by convex functions bounded below by the duality product. It is natural to ask under which conditions a convex function represents a maximal monotone operator. A satisfactory answer, in the context of reflexive Banach spaces, has been obtained some years ago. Recently, a partial result on non-reflexive Banach spaces w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008