Optimal Bipartite Network Clustering
نویسندگان
چکیده
We consider the problem of bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal in the sense that it achieves the optimal convergence rate that is achievable by a biclustering oracle, adaptively over the whole class, up to constants. The optimal rate we obtain sharpens some of the existing results and generalizes others to a wide regime of average degree growth. As a special case, we recover the known exact recovery threshold in the log n regime of sparsity. To obtain the general consistency result, as part of the provable version of the algorithm, we introduce a subblock partitioning scheme that is also computationally attractive, allowing for distributed implementation of the algorithm without sacrificing optimality. The provable version of the algorithm is derived from a general blueprint for pseudo-likelihood biclustering algorithms that employ simple EM type updates. We show the effectiveness of this general class by numerical simulations.
منابع مشابه
An MDL Approach to Efficiently Discover Communities in Bipartite Network
Bipartite network is a branch of complex network. It is widely used in many applications such as social network analysis, collaborative filtering and information retrieval. Partitioning a bipartite network into smaller modules helps to get insight of the structure of the bipartite network. The main contributions of this paper include: (1) proposing an MDL 21 criterion for identifying a good par...
متن کاملAn MDL Approach to Efficiently Discover Communities in Bipartite Network1
Bipartite network is a branch of complex network. It is widely used in many applications such as social network analysis, collaborative filtering and information retrieval. Partitioning a bipartite network into smaller modules helps to get insight of the structure of the bipartite network. The main contributions of this paper include: (1) proposing an MDL 21 criterion for identifying a good par...
متن کاملThe clustering coefficient and community structure of bipartite networks
Many real-world networks display a natural bipartite structure. It is necessary and important to study the bipartite networks by using the bipartite structure of the data. Here we propose a modification of the clustering coefficient given by the fraction of cycles with size four in bipartite networks. Then we compare the two definitions in a special graph, and the results show that the modifica...
متن کاملAn Artificial Bee Colony Inspired Clustering Solution to Prolong Lifetime of Wireless Sensor Networks
It is very difficult and expensive to replace sensor node battery in wireless sensor network in many critical conditions such as bridge supervising, resource exploration in hostile locations, and wildlife safety, etc. The natural choice in such situations is to maximize network lifetime. One such approach is to divide the sensing area of wireless sensor network into clusters to achieve high ene...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کامل