Strongly n-trivial Knots

نویسندگان

  • Hugh Howards
  • John Luecke
چکیده

We prove that given any knot k of genus g, k fails to be strongly n-trivial for all n, n ≥ 3g − 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Everywhere 1-trivial Knot Projections

A knot diagram is called everywhere n-trivial, if it turns into an unknot diagram by switching any set of n of its crossings. We show several partial cases of the conjecture that the knots with everywhere 1-trivial knot diagrams are exactly the trivial, trefoil and figure eight knots. We discuss a relation to 2-trivadjacent knots and prove some properties of such knots mainly concerning their H...

متن کامل

Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic Knots

We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of orders ≤ n and such that the volume of the complement of K is larger than n. We compare our result with known results about the relation of hyperbolic volume and Alexander polynomials of alternating knots. We also discuss how our result compares with relations between ...

متن کامل

There Exist Non-trivial Pl Knots Whose Complements Are Homotopy Circles

We show that there exist non-trivial PL knots S n−2 ⊂ S n , n ≥ 5, whose complements have the homotopy type of circles. This is in contrast to the case of smooth, PL locally-flat, and topological locally-flat knots, for which it is known that if the complement has the homotopy type of a circle, then the knot is trivial. It is well-known that if the complement of a smooth, PL locally-flat, or to...

متن کامل

Non-integral Toroidal Dehn Surgeries

If we perform a non-trivial Dehn surgery on a hyperbolic knot in the 3-sphere, the result is usually a hyperbolic 3-manifold. However, there are exceptions: there are hyperbolic knots with surgeries that give lens spaces [1], small Seifert fiber spaces [2], [5], [7], [20], and toroidal manifolds, that is, manifolds containing (embedded) incompressible tori [6], [7]. In particular, Eudave-Muñoz ...

متن کامل

Vassiliev Invariants and Rational Knots of Unknotting Number One

Introducing a way to modify knots using n-trivial rational tangles, we show that the number of n-trivial rational knots of at most k crossings is for any n asymptotically at least C(lnk)2 for any C < 2 ln2 pe. The method also extends a recent result of Ohyama, Taniyama and Yamada, showing that Vassiliev invariants are unrelated to the unknotting number. The same holds for 4genera, signatures an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008