Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
نویسندگان
چکیده
The full-length mouse prion protein, moPrP, is shown to form worm-like amyloid fibrils at pH 2 in the presence of 0.15 M NaCl, in a slow process that is accelerated at higher temperatures. Upon reduction in pH to 2, native moPrP transforms into a mixture of soluble beta-rich oligomers and alpha-rich monomers, which exist in a slow, concentration-dependent equilibrium with each other. It is shown that only the beta-rich oligomers and not the alpha-rich monomers, can form worm-like amyloid fibrils. The mechanism of formation of the worm-like amyloid fibrils from the beta-rich oligomers has been studied with four different physical probes over a range of temperatures and over a range of protein concentrations. The observed rate of fibrillation is the same, whether measured by changes in ellipticity at 216 nm, in thioflavin fluorescence upon binding, or in the mean hydrodynamic radius. The observed rate is significantly slower when monitored by total scattering intensity, suggesting that lateral association of the worm-like fibrils occurs after they form. The activation energy for worm-like fibril formation was determined to be 129 kJ/mol. The observed rate of fibrillation increases with an increase in protein concentration, but saturates at protein concentrations above 50 microM. The dependence of the observed rate of fibrillation on protein concentration suggests that aggregate growth is rate-limiting at low protein concentration and that conformational change, which is independent of protein concentration, becomes rate-limiting at higher protein concentrations. Hence, fibril formation by moPrP occurs in at least two separate steps. Longer but fewer worm-like fibrils are seen to form at low protein concentration, and shorter but more worm-like fibrils are seen to form at higher protein concentrations. This observation suggests that the beta-rich oligomers grow progressively in size to form critical higher order-oligomers from which the worm-like amyloid fibrils then form.
منابع مشابه
Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients
Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...
متن کاملDissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombin...
متن کاملElongation of Mouse Prion Protein Amyloid-Like Fibrils: Effect of Temperature and Denaturant Concentration
Prion protein is known to have the ability to adopt a pathogenic conformation, which seems to be the basis for protein-only infectivity. The infectivity is based on self-replication of this pathogenic prion structure. One of possible mechanisms for such replication is the elongation of amyloid-like fibrils. We measured elongation kinetics and thermodynamics of mouse prion amyloid-like fibrils a...
متن کاملUV-Light Exposed Prion Protein Fails to Form Amyloid Fibrils
Amyloid fibril formation involves three steps; structural perturbation, nucleation and elongation. We have investigated amyloidogenesis using prion protein as a model system and UV-light as a structural perturbant. We find that UV-exposed prion protein fails to form amyloid fibrils. Interestingly, if provided with pre-formed fibrils as seeds, UV-exposed prion protein formed amyloid fibrils albe...
متن کاملRunaway domain swapping in amyloid-like fibrils of T7 endonuclease I.
Amyloid fibrils are associated with >20 fatal human disorders, including Alzheimer's, Parkinson's, and prion diseases. Knowledge of how soluble proteins assemble into amyloid fibrils remains elusive despite its potential usefulness for developing diagnostics and therapeutics. In at least some fibrils, runaway domain swapping has been proposed as a possible mechanism for fibril formation. In run...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 382 5 شماره
صفحات -
تاریخ انتشار 2008