Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity
نویسندگان
چکیده
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD. This was called the 'AUG-proximity effect'. The present analysis of nonsense codons in the human α-globin mRNA illustrates that the determinants of the AUG-proximity effect are in fact quite complex, reflecting the ability of the ribosome to re-initiate translation 3' to the PTC and the specific sequence and secondary structure of the translated ORF. These data support a model in which the time taken to translate the short ORF, impacted by distance, sequence, and structure, not only modulates translation re-initiation, but also impacts on the exact boundary of AUG-proximity protection from NMD.
منابع مشابه
Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and rapidly degrades mRNAs containing premature termination codons (PTC). The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have previously reported that mRNAs containing PTCs in close proximity to the translation initiation codon (AUG-proximal PTCs) can substantially evade ...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملCharacterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover.
Several lines of evidence indicate that the processes of mRNA turnover and translation are intimately linked and that understanding this relationship is critical to elucidating the mechanism of mRNA decay. One clear example of this relationship is the observation that nonsense mutations can accelerate the decay of mRNAs in a process that we term nonsense-mediated mRNA decay. The experiments des...
متن کاملA system for coordinated analysis of translational readthrough and nonsense-mediated mRNA decay
The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing premature termination codons, limiting the expression of potentially deleterious truncated proteins. This activity positions the pathway as a regulator of the severity of genetic diseases caused by nonsense mutations. Because many genetic diseases result from nonsense alleles, therapeutics inducing readthrough of premature...
متن کاملBinary specification of nonsense codons by splicing and cytoplasmic translation.
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected ...
متن کامل