The combinatorial encoding of disjoint convex sets in the plane

نویسندگان

  • Jacob E. Goodman
  • Richard Pollack
چکیده

We introduce a new combinatorial object, the double-permutation sequence, and use it to encode a family of mutually disjoint compact convex sets in the plane in a way that captures many of its combinatorial properties. We use this encoding to give a new proof of the Edelsbrunner-Sharir theorem that a collection of n compact convex sets in the plane cannot be met by straight lines in more than 2n 2 combinatorially distinct ways. The encoding generalizes the authors’ encoding of point configurations by “allowable sequences” of permutations. Since it applies as well to a collection of compact connected sets with a specified pseudoline arrangement A of separators and double tangents, the result extends the Edelsbrunner-Sharir theorem to the case of geometric permutations induced by pseudoline transversals compatible with A .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

Interval sequences and the combinatorial encoding of planar families of pairwise disjoint convex sets

We extend a combinatorial encoding of families of pairwise disjoint convex sets in the plane recently introduced by J. E. Goodman and R. Pollack to the case of families not in general position. This encoding generalizes allowable sequences, which encode finite planar point sets. Further we prove several results on realizability questions, and discuss a number of different combinatorial properti...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

On Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2008