Dapper Antagonist of Catenin-1 (Dact1) contributes to dendrite arborization in forebrain cortical interneurons

نویسندگان

  • Annie Arguello
  • Benjamin NR Cheyette
چکیده

In mice, genetically engineered knockout of the Dapper Antagonist of Catenin-1 (Dact1) locus, which encodes a scaffold protein involved in Wnt signaling, leads to decreased excitatory input formation on dendrites of developing forebrain neurons. We have previously demonstrated this in both (excitatory, glutamatergic) pyramidal neurons of the hippocampus and in (inhibitory GABAergic) interneurons of the cortex. We have also demonstrated that knockout of the Dact1 locus leads to decreased dendrite complexity in cultured hippocampal pyramidal neurons, and to decreased spine formation on dendrites of forebrain pyramidal neurons in vitro and in vivo. Synapse phenotypes resulting from Dact1 loss in cultured cortical interneurons can be rescued by recombinant overexpression of the Dact1 binding partner, Dishevelled-1 (Dvl1), but not by recombinant expression of a constitutively active form of the small GTPase Rac1. This contrasts with dendrite spine phenotypes resulting from Dact1 loss in cultured hippocampal pyramidal neurons, which can be fully rescued by recombinant expression of activated Rac1. Taken together, these data suggest that in maturing forebrain neurons there are molecularly separate requirements for Dact1 in dendrite arborization/spine formation vs. synaptogenesis. Here, we show that the developmental requirement for Dact1 during dendrite arborization, which we previously demonstrated only in hippocampal pyramidal neurons, is also present in cortical interneurons, and we discuss mechanistic implications of this finding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dapper Antagonist of Catenin-1 Cooperates with Dishevelled-1 during Postsynaptic Development in Mouse Forebrain GABAergic Interneurons

Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Po...

متن کامل

Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain.

Dact1 (Dapper/Frodo), an intracellular phosphoprotein that binds Dishevelled, catenins, and other signaling proteins, is expressed in the developing and mature mammalian CNS, but its function there is unknown. Dact1 colocalized with synaptic markers and partitioned to postsynaptic fractions from cultured mouse forebrain neurons. Hippocampal neurons from Dact1 knock-out mice had simpler dendriti...

متن کامل

SEC14 and Spectrin Domains 1 (Sestd1), Dishevelled 2 (Dvl2) and Dapper Antagonist of Catenin-1 (Dact1) co-regulate the Wnt/Planar Cell Polarity (PCP) pathway during mammalian development

We previously reported that Sestd1 KO phenocopies Dact1 KO in mice, consistent with a model in which Sestd1 and Dact1 act together to form a crucial functional complex that regulates Vangl2 in the Wnt/Planar Cell Polarity (PCP) pathway. Here, we show that Dvl2, a binding partner of Dact1, also forms complexes with Sestd1, and does so independently of both Dact1 and Vangl2. In cell-based assays,...

متن کامل

Dact2 Represses PITX2 Transcriptional Activation and Cell Proliferation through Wnt/beta-Catenin Signaling during Odontogenesis

Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription fac...

متن کامل

DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex.

Down syndrome cell adhesion molecule, or DSCAM, has been implicated in many neurodevelopmental processes including axon guidance, dendrite arborization, and synapse formation. Here we show that DSCAM plays an important role in regulating the morphogenesis of cortical pyramidal neurons in the mouse. We report that DSCAM expression is developmentally regulated and localizes to synaptic plasma mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013