ON OLIVER’S p-GROUP CONJECTURE: II

نویسندگان

  • DAVID J. GREEN
  • NADIA MAZZA
چکیده

Let p be an odd prime and S a finite p-group. B. Oliver’s conjecture arises from an open problem in the theory of p-local finite groups. It is the claim that a certain characteristic subgroup X(S) of S always contains the Thompson subgroup. In previous work the first two authors and M. Lilienthal recast Oliver’s conjecture as a statement about the representation theory of the factor group S/X(S). We now verify the conjecture for a wide variety of groups S/X(S).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON A STRONG FORM OF OLIVER’S p-GROUP CONJECTURE

We introduce a strong form of Oliver’s p-group conjecture and derive a reformulation in terms of the modular representation theory of a quotient group. The Sylow p-subgroups of the symmetric group Sn and of the general linear group GLn(Fq) satisfy both the strong conjecture and its reformulation.

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009