A Bootstrap Technique for Nearest Neighbor Classifier Design

نویسندگان

  • Yoshihiko Hamamoto
  • Shunji Uchimura
  • Shingo Tomita
چکیده

A bootstrap technique for nearest neighbor classifier design is proposed. Our primary interest in designing a classifier is in small training sample size situations. Conventional bootstrapping techniques sample the training samples with replacement. On the other hand, our technique generates bootstrap samples by locally combining original training samples. The nearest neighbor classifier is designed on the bootstrap samples and is tested on the test samples independent of training samples. The performance of the proposed classifier is demonstrated on three artificial data sets and one real data set. Experimental results show that the nearest neighbor classifier designed on the bootstrap samples outperforms the conventional k-NN classifiers as well as the edited 1 -NN classifiers, particularly in high dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal bootstrap estimation of expected prediction error for k-nearest neighbor classifiers: Applications for classification and error assessment

Euclidean distance -nearest neighbor ( -NN) classifiers are simple nonparametric classification rules. 5 5 Bootstrap methods, widely used for estimating the expected prediction error of classification rules, are motivated by the objective of calculating the ideal bootstrap estimate of expected prediction error. In practice, bootstrap methods use Monte Carlo resampling to estimate the ideal boot...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

A vector quantization method for nearest neighbor classifier design

This paper proposes a nearest neighbor classifier design method based on vector quantization (VQ). By investigating the error distribution pattern of the training set, the VQ technique is applied to generate prototypes incrementally until the desired classification result is reached. Experimental results demonstrate the effectiveness of the method. 2004 Elsevier B.V. All rights reserved.

متن کامل

The design of a nearest-neighbor classifier and its use for Japanese character recognition

The nearest neighbor (NN) approach is a powerfd nonparametric technique for pattern classification tasks. In this paper, algorithms for prototype reduction, hierarchical prototype organization and fast NN search are described. To remove redundant category prototypes and to avoid redundant comparisons, the algorithms exploit geometrical information of a given prototype set which is represented a...

متن کامل

Fusion of multiple approximate nearest neighbor classifiers for fast and efficient classification

The nearest neighbor classifier (NNC) is a popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Important factors affecting the efficiency and performance of NNC are (i) memory required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and (iii) due to the curse of dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1997