Contribution of anaerobic energy expenditure to whole body thermogenesis
نویسنده
چکیده
Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure--can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.
منابع مشابه
Brown Adipose Tissue as a Regulator of Energy Expenditure and Body Fat in Humans
Brown adipose tissue (BAT) is recognized as the major site of sympathetically activated nonshivering thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controling whole-body energy expenditure and body fat. In adult humans, BAT has long been believed to be absent or negligible, but recent studies using fluorodeoxyglucose-positron emission tomography, in combination wi...
متن کاملSkeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism
Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to in...
متن کاملNervous System Chronic Sympathetic Attenuation and Energy Metabolism in Autonomic Failure
The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of -blockers as a model to eliminate sympathetic stimulation and to examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however...
متن کاملLeptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake
OBJECTIVE Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) th...
متن کاملChronic sympathetic attenuation and energy metabolism in autonomic failure.
The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of β-blockers as a model to eliminate sympathetic stimulation and to examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nutrition & Metabolism
دوره 2 شماره
صفحات -
تاریخ انتشار 2005