Discrete fractional Hadamard transform

نویسندگان

  • Soo-Chang Pei
  • Min-Hung Yeh
چکیده

Hadamard transform is an important tool in discrete signal processing. In this paper, we define the discrete fractional Hadamard transform which is a generalized one. The development of discrete fractional Hadamard is based upon the same spirit of discrete fractional Fourier transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete HARWHT and Discrete Fractional HARWHT Transforms

This paper introduces a new transform known as HARWHT. It results from the Kronecker product of the discrete Hartley transform (DHT) and discrete Walsh-Hadamard transform (WHT). The eigenvectors and eigenvalues of the HARWHT transform matrices are presented using Kronecker product. Then, the results of the eigen decomposition of the transform matrices are used to define discrete fractional HARW...

متن کامل

Construction of Nested (nearly) Orthogonal Designs for Computer Experiments

We propose several methods for constructing nested (nearly) orthogonal designs intended for multi-fidelity computer experiments. Such designs are two (nearly) orthogonal designs with one nested within the other. Our methods exploit nesting in such discrete structures as fractional factorial designs, Hadamard matrices, and rotation matrices. Examples are given illustrating the proposed methods.

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999