Quantum layers over surfaces ruled outside a compact set
نویسندگان
چکیده
In this paper, we prove that quantum layers over a surface which is ruled outside a compact set, nonplanar but asymptotically flat, admit a ground state for the Dirichlet Laplacian. The work here also represents some technical progress toward resolving the conjecture that a quantum layer over any nonplanar, asymptotically flat surface with integrable Gauss curvature must possess ground state. © 2007 American Institute of Physics. DOI: 10.1063/1.2736518
منابع مشابه
Topologically non-trivial quantum layers
Given a complete non-compact surface Σ embedded in R, we consider the Dirichlet Laplacian in the layer Ω that is defined as a tubular neighbourhood of constant width about Σ. Using an intrinsic approach to the geometry of Ω, we generalise the spectral results of the original paper [1] by Duclos et al. to the situation when Σ does not possess poles. This enables us to consider topologically more...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملOn Totally Geodesic Foliations and Doubly Ruled Surfaces in a Compact Lie Group
For a Riemannian submersion from a simple compact Lie group with a bi-invariant metric, we prove the action of its holonomy group on the fibers is transitive. As a step towards classifying Riemannian submersions with totally geodesic fibers, we consider the parameterized surface induced by lifting a base geodesic to points along a geodesic in a fiber. Such a surface is “doubly ruled” (it is rul...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملProposed Research
I was a graduate student at the Mas-sachusetts Institute of Technology. The rst three years of these studies were supported by an NSF Graduate Student Fellowship. My research there led to a Ph.D. thesis entitled \Noncommutative ruled surfaces." My thesis research describes certain classes of graded rings which arise as homogeneous coordinate rings of noncommutative quantizations of algebraicall...
متن کامل