Control of Spacecraft in Proximity Orbits

نویسنده

  • Louis Scott Breger
چکیده

Formation flying of spacecraft and autonomous rendezvous and docking of spacecraft are two missions in which satellites operate in close proximity and their relative trajectories are critically important. Both classes of missions rely on accurate dynamics models for fuel minimization and observance of strict constraints for preventing collisions and achieving mission objectives. This thesis presents improvements to spacecraft dynamics modeling, orbit initialization procedures, and failsafe trajectory design that improve the feasibility and chances of success for future proximity operations. This includes the derivation of a new set of relative linearized orbital dynamics incorporating the effects of Earth’s oblateness. These dynamics are embedded in a model predictive controller, enabling LP-based MPC formulations for large baseline formations in highly elliptic orbits. An initialization algorithm is developed that uses the new dynamics to optimize multiple objectives (drift and fuel usage minimization, geometry) over science-relevant time frames, improving previous J2-invariant initialization techniques which only considered infinite-horizon secular drift. The trajectory planning algorithm is used to design spacecraft rendezvous paths that observe realistic constraints on thruster usage and approach path. The paths are fuel-optimized and further constrained to be safe (i.e., avoid collisions) in the presence of many possible system failures, an enhancement over previous guaranteed-safe rendezvous methods, which did not minimize fuel use. The fuel costs of imposing safety as a constraint on trajectory design are determined to be low compared to standard approaches and a stochastic analysis demonstrates that both active and passive forms of the safe rendezvous algorithm substantially decrease the likelihood of system failures resulting in collisions. The effectiveness of the new controller/dynamics combination is demonstrated in high fidelity multi-week simulations. An optimized safe rendezvous trajectory was demonstrated on a hardware testbed aboard the International Space Station. Thesis Supervisor: Jonathan P. How Title: Associate Professor of Aeronautics and Astronautics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits

The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...

متن کامل

Effects Analysis of Frozen Conditions for Spacecraft Relative Motion Dynamics

The purpose of this rersearch is to analyze the effective application of particular earth orbits in dynamical modeling of relative motion problem between two spacecraft. One challenge in implementing these motions is maintaining the relations as it experiences orbital perturbations (zonal harmonics J2 and J3), most notably due to the Earth’s oblateness. Certain aspects of the orbital geometry c...

متن کامل

Thrust - Limited Optimal Three - Dimensional Spacecraft Trajectories

Several optimal three-dimensional orbital transfer problems are solved for thrust-limited spacecrafts using collocation and nonlinear programming techniques. The solutions for full nonlinear equations of motion are obtained where the integrals of the free Keplerian motion in three dimensions are utilized for coasting arcs. In order to limit the solution space, interior-point constraints are use...

متن کامل

Close Proximity Formation Flying via Linear Quadratic Tracking Controller and Artificial Potential Function

A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, te...

متن کامل

An LTP/LPV approach to orbit control of spacecraft on elliptical orbits

The problem of orbit control for spacecraft on elliptical orbits is analysed and an approach to the design of optimal constant gain controllers for the periodic dynamics of relative motion is proposed. In particular, it is shown how the proposed approach can guarantee closed loop stability and optimal performance both in the case of circular and elliptical orbits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007