Three Arginine-Rich Cell-Penetrating Peptides Facilitate Cellular Internalization of Red-Emitting Quantum Dots.
نویسندگان
چکیده
Nanoparticles, such as semiconductor quantum dots (QDs), have been found increasing use in biomedical diagnosis and therapeutics because of their unique properties, including quantum confinement, surface plasmon resonance, and superparamagnetism. Cell-penetrating peptides (CPPs) represent an efficient mechanism to overcome plasma membrane barriers and deliver biologically active molecules into cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) can noncovalently complex with red light emitting QDs, dramatically increasing their deliv- ery into living cells. Zeta-potential and size analyses highlight the importance of electrostatic interactions between positive-charged CPP/QD complexes and negative-charged plasma membranes indicating the efficiency of transmembrane complex transport. Subcellular colocalization indicates associations of QD with early endosomes and lysosomes following PR9-mediated delivery. Our study demonstrates that nontoxic CPPs of varied composition provide an effective vehicle for the design of optimized drug delivery systems.
منابع مشابه
Cellular internalization of quantum dots noncovalently conjugated with arginine-rich cell-penetrating peptides.
Protein transduction domains comprised of basic amino acid-rich peptides, can efficiently deliver covalently fused macromolecules into cells. Quantum dots (QDs) are luminescent semiconductor nanocrystals that are finding increasing application in biological imaging. Previous studies showed that protein transduction domains mediate the internalization of covalently attached QDs. In this study, w...
متن کاملCellular Internalization of Quantum Dots Mediated by Cell-Penetrating Peptides
Nanomaterials have been utilized in biomedical applications for many years because of their unique properties such as quantum confinement, surface plasmon resonance, and superparamagnetism. These applications are expected to advance diagnosis and therapeutics. Fluorescent nanomaterials, such as quantum dots (QDs), were exalted in biological imaging and tracking, and trended to replace protein-b...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملIntracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism.
Functional peptides that transfer biomaterials, such as semiconductor quantum dots (QDs), into cells in biomaterial research have been developed in recent years. Delivery of QDs conjugated with cell-penetrating peptides (CPPs) into cells by the endocytic pathway was problematic in biomedical applications because of lysosomal trapping. Here, we demonstrate that histidine- and arginine-rich CPPs ...
متن کاملEffects of Surface Charge and Particle Size of Cell-Penetrating Peptide/Nanoparticle Complexes on Cellular Internalization
Cell membranes are natural barriers that prevent macromolecules from permeating cells. The efficiency of exogenous materials entering cells relies on various strategies and factors. Cell-penetrating peptides (CPPs) are distinctive molecules that can penetrate cells by themselves, as well as carry cargoes into cells in both covalent and noncovalent manners. In this chapter, we use CPP-mediated d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2015