Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo

نویسندگان

  • Loek R. van der Kallen
  • Ruben Eggers
  • Erich M. Ehlert
  • Joost Verhaagen
  • August B. Smit
  • Ronald E. van Kesteren
  • Michael Costigan
چکیده

Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly promotes axon outgrowth in vitro. Here we tested whether genetic deletion or dominant-negative inhibition of NFIL3 could promote axon regeneration and functional recovery after peripheral nerve lesion in vivo. Contrary to our expectations, we observed no changes in the expression of regeneration-associated genes and a significant delay in functional recovery following genetic deletion of Nfil3. When NFIL3 function was inhibited specifically in dorsal root ganglia prior to sciatic nerve injury, we observed a decrease in regenerative axon growth into the distal nerve segment rather than an increase. Finally, we show that deletion of Nfil3 changes sciatic nerve lesion-induced expression in dorsal root ganglia of genes that are not typically involved in regeneration, including several olfactory receptors and developmental transcription factors. Together our findings show that removal of NFIL3 in vivo does not recapitulate the regeneration-promoting effects that were previously observed in vitro, indicating that in vivo transcriptional control of regeneration is probably more complex and more robust against perturbation than in vitro data may suggest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo.

Abnormal axonal connectivity and hyperactive mTOR complex 1 (mTORC1) are shared features of several neurological disorders. Hyperactive mTORC1 alters axon length and polarity of hippocampal neurons in vitro, but the impact of hyperactive mTORC1 on axon growth in vivo and the mechanisms underlying those effects remain unclear. Using in utero electroporation during corticogenesis, we show that in...

متن کامل

NFAT-3 is a transcriptional repressor of the growth-associated protein 43 during neuronal maturation.

Transcription is essential for neurite and axon outgrowth during development. Recent work points to the involvement of nuclear factor of activated T cells (NFAT) in the regulation of genes important for axon growth and guidance. However, NFAT has not been reported to directly control the transcription of axon outgrowth-related genes. To identify transcriptional targets, we performed an in silic...

متن کامل

In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration.

In the peripheral nervous system (PNS), damaged axons regenerate successfully, whereas axons in the CNS fail to regrow. In neurons of the dorsal root ganglia (DRG), which extend branches to both the PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal growth. How this differential growth response is regulated in vivo is only incompletely understood. Here, we combine in vivo time-l...

متن کامل

Survival factor NFIL3 restricts FOXO-induced gene expression in cancer.

Depending on the circumstance, FOXO (Forkhead O) (FOXO1, FOXO3, and FOXO4) transcription factors activate the expression of markedly different sets of genes to produce different phenotypic effects. For example, distinct FOXO-regulated transcriptional programs stimulate cell death or enhance organism life span. To gain insight into how FOXOs select specific genes for regulation, we performed a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015