Integrability Conditions for the Grushin and Martinet Distributions

نویسندگان

  • OVIDIU CALIN
  • DER-CHEN CHANG
  • MICHAEL EASTWOOD
چکیده

We realise the first and second Grushin distributions as symmetry reductions of the 3-dimensional Heisenberg distribution and 4-dimensional Engel distribution respectively. Similarly, we realise the Martinet distribution as an alternative symmetry reduction of the Engel distribution. These reductions allow us to derive the integrability conditions for the Grushin and Martinet distributions and build certain complexes of differential operators. These complexes are well-behaved despite the distributions they resolve being non-regular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-finsler Structures from the Time-optimal Control Viewpoint for Some Nilpotent Distributions

In this paper we study the sub-Finsler geometry as a time-optimal control problem. In particular, we consider non-smooth and non-strictly convex sub-Finsler structures associated with the Heisenberg, Grushin, and Martinet distributions. Motivated by problems in geometric group theory, we characterize extremal curves, discuss their optimality, and calculate the metric spheres, proving their Eucl...

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Integrability of Distributions on Two Kinds of Manifold

In this paper, we give some sufficient and necessary conditions for integrability of distributions on an almost Hermitian manifold and a quasi Kaehlerian manifold, and generalize Bejancu’s and WanYong’s research work.

متن کامل

On the Integrability of Orthogonal Distributions in Poisson Manifolds

In this article we study conditions for the integrability of the distribution defined on a regular Poisson manifold as the orthogonal complement (with respect to a pseudo-Riemannian metric) to the tangent spaces of the leaves of a symplectic foliation. Examples of integrability and non-integrability of this distribution are provided.

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013