Silicon nanowire circuits fabricated by AFM oxidation nanolithography.

نویسندگان

  • Ramses V Martínez
  • Javier Martínez
  • Ricardo Garcia
چکیده

We report a top-down process for the fabrication of single-crystalline silicon nanowire circuits and devices. Local oxidation nanolithography is applied to define very narrow oxide masks on top of a silicon-on-insulator substrate. In a plasma etching, the nano-oxide mask generates a nanowire with a rectangular section. The nanowire width coincides with the lateral size of the mask. In this way, uniform and well-defined transistors with channel widths in the 10-20 nm range have been fabricated. The nanowires can be positioned with sub-100 nm lateral accuracy. The transistors exhibit an on/off current ratio of 10(5). The atomic force microscope nanolithography offers full control of the nanowire's shape from straight to circular or a combination of them. It also enables the integration of several nanowires within the same circuit. The nanowire transistors have been applied to detect immunological processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography

The junctionless nanowire transistor is a promising alternative for a new generation of nanotransistors. In this letter the atomic force microscopy nanolithography with two wet etching processes was implemented to fabricate simple structures as double gate and single gate junctionless silicon nanowire transistor on low doped p-type silicon-on-insulator wafer. The etching process was developed a...

متن کامل

Electric Field Based Simulations of Local Oxidation Nanolithography using Atomic Force Microscopy in a Level Set Environment

During the last decades it has been shown that non-contact AFM can be used as an efficient lithographic technique capable of manufacturing nanometer sized devices on the surface of a silicon wafer. The AFM nanooxidation approach is based on generating a potential difference between a cantilever needle tip and a silicon wafer. A water meniscus builds up between the tip and the wafer, resulting i...

متن کامل

Si/SiGe Nanostructures Fabricated by Atomic Force Microscopy Oxidation

In this work, local AFM oxidation technique in a controlled humidity environment has been used to create small features in strained SiGe alloys. When directly oxidizing SiGe alloys, minimum line widths of 20nm were achieved by adjusting parameters such as the bias voltage on the microscope tip and the tip writing speed. It was found that when bias voltage increases, and/or when the tip writing ...

متن کامل

Nanoscale materials patterning and engineering by atomic force microscopy nanolithography

This review article aims to provide an updated and comprehensive description on the development of atomic force microscopy (AFM) nanolithography for structuring and fabrication at the nanometer scale. The many AFM nanolithographic techniques are classified into two general groups of force-assisted and bias-assisted nanolithography on the basis of their mechanistic and operational principles. Fo...

متن کامل

Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography.

We present a process to fabricate molecule-based nanostructures by merging a bottom-up interaction and a top-down nanolithography. Direct nanoscale positioning arises from the attractive electrostatic interactions between the molecules and silicon dioxide nanopatterns. Local oxidation nanolithography is used to fabricate silicon oxide domains with variable gap separations ranging from 40 nm to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 24  شماره 

صفحات  -

تاریخ انتشار 2010