Multimolecular complex of Par-4 and E2F1 binding to Smac promoter contributes to glutamate-induced apoptosis in human- bone mesenchymal stem cells

نویسندگان

  • Chao Lu
  • Jie-Qing Chen
  • Guo-Ping Zhou
  • Sheng-Hua Wu
  • Ya-Fei Guan
  • Chuan-Shun Yuan
چکیده

Neural cells undergo glutamate-induced apoptosis in ischaemic brain tissue, in which prostate apoptosis response-4 gene (Par-4) is involved. Human-bone mesenchymal stem cells can be utilized as an effective therapy for ischemic brain injury. In this study, we found that glutamate could induce apoptosis in human-bone mesenchymal stem cells, accompanied by increased expression of Par-4 gene and Smac release from mitochondria. Repressing Par-4 expression attenuated the glutamate-induced apoptosis. Both Par-4 protein and E2F1 protein could bind to E2F1-binding BS3 site on Smac promoter and participated in the formation of a proteins-DNA complex. Moreover, in the complex, E2F1, not Par-4, was found to be directly bound to the Smac promoter, suggesting that Par-4 exerted indirectly its transcriptional control on the Smac gene though interacting with E2F1. Expression of full-length Par-4 in human-bone mesenchymal cells resulted in increased activity of the Smac promoter. In addition, the indirect transcripional regulation of Par-4 on Smac depended on its COOH terminus-mediated interaction between Par-4 and E2F1. We conclude that the formation of proteins-DNA complex, containing Par-4 protein, E2F1 protein and the Smac promoter, contributes to the pro-apoptotic effect on glutamate-treated human-bone mesenchymal stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Apoptosis in the Rat Bone Marrow Mesenchymal Stem Cells Following Sodium Arsenite Treatment with the Dose Lesser than that Used for Treatment of Malignant Patient

Objective(s) Arsenic compounds are potent human carcinogen and produce a variety of stress responses in mammalian cells. Recently sodium arsenite has been recommended to be used as anti malignancy drug by American food and drug administration (FDA). In this study, we aimed to determine the apoptosis inducing effect of sodium arsenite on rat bone marrow mesenchymal stem cells exposed in vitro. ...

متن کامل

Novel link between E2F1 and Smac/DIABLO: proapoptotic Smac/DIABLO is transcriptionally upregulated by E2F1

Deregulated expression of E2F1 not only promotes S-phase entry but also induces apoptosis. Although it has been well documented that E2F1 is able to induce p53-dependent apoptosis via raising ARF activity, the mechanism by which E2F induces p53-independent apoptosis remains unclear. Here we report that E2F1 can directly bind to and activate the promoter of Smac/DIABLO, a mitochondrial proapopto...

متن کامل

Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol

Objective(s):In previous investigations, we have shown para-nonylphenol (p-NP) caused significant reduction of proliferation and differentiation of rat bone marrow mesenchymal stem cells (MSCs) in vitro. In this study, we first treat the rats with p-NP, then carried out the biochemical and morphological studies on MSCs. Materials and Methods: Proliferation property of cells was evaluated with t...

متن کامل

Effects of treadmill exercise and preconditioned bone marrow- derived mesenchymal stem cells transplantation on Aβ-induced neurotoxicity in male rats

Introduction: Preconditioning of mesenchymal stem cells (MSCs) is a promising strategy to enhance the therapeutic properties of transplanted MSCs. In this study, we investigated the synergistic effects of treadmill exercise and dimethyloxalylglycine (DMOG)-preconditioned stem cells in an Alzheimer’s disease (AD) model. Materials and Methods: DMOG- treated MSCs were intravenously transplanted in...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008