The Spectral Geometry of the Riemann Curvature Tensor
نویسندگان
چکیده
Let E be a natural operator associated to the curvature tensor of a pseudo-Riemannian manifold. We study when the spectrum, or more generally the real Jordan normal form, of E is constant on the natural domain of definition. In particular, we examine the Jacobi operator, the higher order Jacobi operator, the Szabo operator, and the skew-symmetric curvature operator.
منابع مشابه
The Spectral Geometry of the Riemann Curvature Operator in the Higher Signature Setting
We study the spectral geometry of the Riemann curvature tensor for pseudo-Riemannian manifolds and provide some examples illustrating the phenomena which can arise in the higher signature setting. Dedication: This paper is dedicated to the memory of our colleague Prof. Gr. Tsagas who studied the spectral geometry of the Laplacian.
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملOn the Riemann tensor in double field theory
Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, b...
متن کاملTowards an invariant geometry of double field theory
We introduce a geometrical framework for double field theory in which generalized Riemann and torsion tensors are defined without reference to a particular basis. This invariant geometry provides a unifying framework for the frame-like and metric-like formulations developed before. We discuss the relation to generalized geometry and give an ‘index-free’ proof of the algebraic Bianchi identity. ...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کامل