Quantitative Stability of Optimization Problems and Generalized Equations
نویسندگان
چکیده
This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lischitz and upper Hölder type, respectively, hold. Furthermore, we apply the above results to parametric mathematical programs with equilibrium constraints and demonstrate, how some classical results for the nonlinear programming problem can be recovered and even improved by our theory.
منابع مشابه
Quantitative Stability Analysis of Stochastic Generalized Equations
We consider the solution of a system of stochastic generalized equations (SGE) where the underlying functions are mathematical expectation of random set-valued mappings. SGE has many applications such as characterizing optimality conditions of a nonsmooth stochastic optimization problem or equilibrium conditions of a stochastic equilibrium problem. We derive quantitative continuity of expected ...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملSlope Stability Analysis Using A Non-linear Optimization Technique (RESEARCH NOTE)
In this study, a limit equilibrium method has been developed that satisfies all conditions of equilibrium and assumes circular slip surfaces. All force and moment equilibrium equations are employed without using simplification assumptions. A non-linear optimization technique is used to solve the system of equations with the corresponding constraints. The proposed method is capable to determine ...
متن کاملSystem of AQC functional equations in non-Archimedean normed spaces
In 1897, Hensel introduced a normed space which does not have the Archimedean property. During the last three decades theory of non--Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p--adic strings and superstrings. In this paper, we prove the generalized Hyers--Ulam--Rassias stability for a ...
متن کاملAn implicit-function theorem for a class of monotone generalized equations
Implicit-function theorems for generalized equations play an important role in many applications, especially in the stability and sensitivity analysis of variational inequalities and optimization problems and in the convergence analysis of numerical algorithms solving such problems. We refer for instance to Fiacco [7] and Ioffe and Tihomirov [9] for applications of the classical implicit-functi...
متن کامل