Geometric nonlinear diffusion filter and its application to X-ray imaging
نویسندگان
چکیده
BACKGROUND Denoising with edge preservation is very important in digital x-ray imaging since it may allow us to reduce x-ray dose in human subjects without noticeable degradation of the image quality. In denoising filter design for x-ray imaging, edge preservation as well as noise reduction is of great concern not to lose detailed spatial information for accurate diagnosis. In addition to this, fast computation is also important since digital x-ray images are mostly comprised of large sized matrices. METHODS We have developed a new denoising filter based on the nonlinear diffusion filter model. Rather than employing four directional gradients around the pixel of interest, we use geometric parameters derived from the local pixel intensity distribution in calculating the diffusion coefficients in the horizontal and vertical directions. We have tested the filter performance, including edge preservation and noise reduction, using low dose digital radiography and micro-CT images. RESULTS The proposed denoising filter shows performance similar to those of nonlinear anisotropic diffusion filters (ADFs), one Perona-Malik ADF and the other Weickert's ADF in terms of edge preservation and noise reduction. However, the computation time has been greatly reduced. CONCLUSIONS We expect the proposed denoising filter can be greatly used for fast noise reduction particularly in low-dose x-ray imaging.
منابع مشابه
Impact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography
Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner. Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a co...
متن کاملMedical Imaging Teacher: A Program to Simulate X-Ray Images of the Body by Considering kVp, mAs, and FFD Values
Introduction: Teaching styles and methods have been constantly changing in the recent years. In the 1980s and 90s, the world was introduced to various developed devices, such as smart boards and early generation smart phones that had an immediate innovative effect on education. These advancements has resulted in a considerable improvement in the current educational techniques. The innovations i...
متن کاملA generalized diffusion based inter-iteration nonlinear bilateral filtering scheme for PET image reconstruction
In this paper, a new inter-iteration filtering scheme based on diffusion Maximum a Posteriori (MAP) estimation for Positron emission tomography (PET) image reconstruction is proposed. This is achieved by gaining the insights into the classical MAP iteration (e.g. the 'one-step-late' algorithm, OSL) and the several well-established approximations to the diffusion process. We show that such a new...
متن کاملX-ray spectra calculation for different target-filter of mammograms using MCNP Code
ABSTRACTBackground: An electron beam generated X-ray spectrum consists of characteristic X-ray and continuous bermsstrahlung. The aim of this research is calculating and comparing X-ray spectra for different target filter of mammograms. Materials and Methods: Monte Carlo is a very powerful tool to simulate a series of different target-filter assembly in order to calculate the X-ray spectra. MC...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کامل