Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames
نویسندگان
چکیده
A new turbulent, premixed, stagnation swirl flame (SSF) is used to synthesize titanium dioxide (TiO2) nanopowders. Synthesis conditions under two flame modes, i.e., burnerand substrate-stabilized SSF, are investigated, for the same equivalence ratio, but different inert-dilution ratios. The particles (collected on the substrate) have high anatase purity, with mean diameters of 5–10 nm, determined using BET and TEM, for all cases studied. For the same mean nanoparticle diameter synthesized, the SSF can accommodate higher precursor loading fluxes than that produced by others using laminar premixed stagnation flat flames. Particles in the flow field are determined to be non-agglomerated. For the particles deposited on the substrate, molecular dynamics simulations support the experimental results that sintering and growth of TiO2 nanoparticles do not occur on the substrate after the deposition, and the high anatase-phase purity is maintained. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
منابع مشابه
Numerical Control of 3D Turbulent Premixed Flame Simulations
One of the well-known properties of turbulent, premixed flames is that their speed of propagtion is correlated to the intensity of the turbulence they encounter. A simple consequence is that these types of flames are inherently unstable. Given a source of turbulence, if the flame is propagating faster than the mean flow, it will drift upstream and encounter increased turbulent intensities that ...
متن کاملCellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and computational analysis at the laboratory scale
One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stati...
متن کاملExperimental study of soot aerosol formation in swirl-stabilized flames of alternative aviation fuels on a path to sustainable aviation
Particulate matter (soot aerosol or carbon black) emissions from combustion systems have adverse effects on human health and the environment. Soot is a major contributor to the total radiation heat loss in propulsion systems. Soot aerosols in the atmosphere have significant positive radiative forcing that contributes to global warming because of strong absorption of sunlight by soot. As compare...
متن کاملEffects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures
0010-2180/$ see front matter 2010 The Combust doi:10.1016/j.combustflame.2010.08.002 ⇑ Corresponding author. Fax: +1 734 647 3170. E-mail address: [email protected] (J.T. Wiswall A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and com...
متن کاملNumerical Simulation of Premixed Turbulent Methane Combustion
In this paper we study turbulent premixed methane flames with swirl using three-dimensional numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach tha...
متن کامل