Multi-angular Flame Measurements and Analysis in a Supersonic Wind Tunnel Using Fiber-Based Endoscopes
نویسندگان
چکیده
This paper reports new measurements and analysis made in the Research Cell 19 supersonic wind-tunnel facility housed at the Air Force Research Laboratory. The measurements include planar chemiluminescence from multiple angular positions obtained using fiber-based endoscopes (FBEs) and the accompanying velocity fields obtained using particle image velocimetry (PIV). The measurements capture the flame dynamics from different angles (e.g., the top and both sides) simultaneously. The analysis of such data by proper orthogonal decomposition (POD) will also be reported. Nonintrusive and fullfield imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of the FBEs for nonintrusive imaging measurements in the supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the practical difficulties and significantly facilitate the measurements. The FBEs are bendable and have relatively small footprints (compared to high-speed cameras), which facilitates line-of-sight optical access. Also, the FBEs can tolerate higher temperatures than high-speed cameras, ameliorating the thermal management issues. Finally, the FBEs, after customization, can enable the capture of multiple images (e.g., images of the flow fields at multi-angles) onto the same camera chip, greatly reducing the equipment cost of the measurements. The multiangle data sets, enabled by the FBEs as discussed above, were analyzed by POD to extract the dominating flame modes when examined from various angular positions. Similar analysis was performed on the accompanying PIV data to examine the corresponding modes of the flow fields. The POD analysis provides a quantitative measure of the dominating spatial modes of the flame and flow structures, and is an effective mathematical tool to extract key physics from large data sets as the high-speed measurements collected in this study. However, the past POD analysis has been limited to data obtained from one orientation only. The availability of data at multiple angles in this study is expected to provide further insights into the flame and flow structures in high-speed propulsion systems. [DOI: 10.1115/1.4031306]
منابع مشابه
A Low Cost Numerical Simulation of a Supersonic Wind-tunnel Design
In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. ...
متن کامل3D measurements of ignition processes at 20 kHz in a supersonic combustor
Reliable ignition in high-speed flows represents a significant scientific problem with a wide range of practical applications. Scientifically, the ignition processes involve complicated interactions among various aspects of chemical reaction and turbulence, which are not fully understood yet [1]. Reliable ignition in propulsion and power devices is further complicated by practical factors such ...
متن کاملExperimental Investigations of Supersonic Flow around a Long Axisymmetric Body
A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schi...
متن کاملExperimental Investigations of Supersonic Flow around a Long Axisymmetric Body
A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schi...
متن کامل3-D Numerical Investigation of Flow Field in Starting Stage of High Speed Wind Tunnels
High speed wind tunnels are widely used in the study of fluid flow behavior around various objects. The air flow in the starting step of supersonic wind tunnels is transient including strong shock waves caused by the interaction of the tunnel main stream and the boundary layer at walls. To arrive in running step, the tunnel must be designed so as these waves leave immediately the test section. ...
متن کامل