Nitrogen deprivation stimulates symbiotic gland development in Gunnera manicata.
نویسندگان
چکیده
Gunnera is the only genus of angiosperms known to host cyanobacteria and the only group of land plants that hosts cyanobacteria intracellularly. Motile filaments of cyanobacteria, known as hormogonia, colonize Gunnera plants through cells in the plant's specialized stem glands. It is commonly held that Gunnera plants always possess functional glands for symbiosis. We found, however, that stem gland development did not occur when Gunnera manicata plants were grown on nitrogen (N)-replete medium but, rather, was initiated at predetermined positions when plants were deprived of combined N. While N status was the main determinant for gland development, an exogenous carbon source (sucrose) accelerated the process. Furthermore, a high level of sucrose stimulated the formation of callus-like tissue in place of the gland under N-replete conditions. Treatment of plants with the auxin transport inhibitor 1-naphthylphthalamic acid prevented gland development on N-limited medium, most likely by preventing resource reallocation from leaves to the stem. Optimized conditions were found for in vitro establishment of the Nostoc-Gunnera symbiosis by inoculating mature glands with hormogonia from Nostoc punctiforme, a cyanobacterium strain for which the full genome sequence is available. In contrast to uninoculated plants, G. manicata plants colonized by N. punctiforme were able to continue their growth on N-limited medium. Understanding the nature of the Gunnera plant's unusual adaptation to an N-limited environment may shed light on the evolution of plant-cyanobacterium symbioses and may suggest a route to establish productive associations between N-fixing cyanobacteria and crop plants.
منابع مشابه
Symbiotic Nitrogen Fixation.
Biosphere nitrogen is subjected to rapid turnover, and because it is eventually lost as nitrogen into the atmosphere, its maintenance requires continuous replenishment with reduced nitrogen from atmospheric nitrogen. Biological reduction of nitrogen to ammonia can be performed only by some prokaryotes and is a highly oxygen-sensitive process. The most efficient nitrogen fixers establish a symbi...
متن کاملNostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.
Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a t...
متن کاملStudy of acute toxicity and investigation of the presence of β-N- methylamino-L-alanine in the Gunnera manicata L. a species native to Southern Brazil
1Laboratory of Analysis and Toxicological Research, Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul Toxicology Laboratory, 2National Agricultural Laboratory of Rio Grande do Sul, LANAGRO/RS , 3Toxicology Information Center of Rio Grande do Sul, State Foundation of Production and Research in Health, 4Department of Botany, Federal University of Rio Grande do S...
متن کاملNitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella
The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at unders...
متن کاملEFFECTS OF SINORHIZOBIUM MELILOTI STRAINS (1021 AND NitR) ON NITROGEN ASSIMILATION OF ALFALFA PLANTS UNDER CONDITIONS OF MINERAL ELEMENTS SHORTAGE
Two Sinorhizobium meliloti strains (1021 and NitR) were used for inoculation of alfalfa plants to study nitrogen assimilation under nutrient deficiency conditions in hydroponics experiments. The wild type Sinorhizobium meliloti 1021 was compared with a mutant strain – S. meliloti NitR. NitR protein was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 139 1 شماره
صفحات -
تاریخ انتشار 2005