A Note on the Dimension of the Bivariate Spline Space over the Morgan-Scott Triangulation

نویسندگان

  • Jiansong Deng
  • Yu Yu Feng
  • Jernej Kozak
چکیده

In [D. Diener, SIAM J. Numer. Anal., 27 (1990), pp. 543–551], a conjecture on the dimension of the bivariate spline space Sr 2r( ) over the Morgan–Scott triangulation was posed. In this paper, it is proved that the conjecture should be modified for all even r > 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Linearly Independent Basis forC 1 Bivariate Splines of Degree q 5

We construct a locally linearly independent basis for the space S 1 q (() (q 5). Bases with this property were available only for some subspaces of smooth bivariate splines. x1. Introduction Let IR 2 be a simply connected polygonal domain, and let denote a triangulation of consisting of N triangles, V vertices and E edges. Given 0 r < q, consider the linear space of bivariate polynomial splines...

متن کامل

On the dimension of the bivariate spline space

In the paper the problem of determining the dimension of the bivari-ate spline space S 1 3 () is considered. It is shown that for a large class of triangulations the dimension of the spline space is equal to the Schu-maker's lower bound. An algorithm is presented, which decides if a given triangulation belongs to such a class.

متن کامل

Dimensions of Spline Spaces over Unconstricted Triangulations

One of the puzzlingly hard problems in Computer Aided Geometric Design and Approximation Theory is that of finding the dimension of the spline space of C piecewise degree n polynomials over a 2D triangulation Ω. We denote such spaces by Sr n(Ω). In this note, we restrict Ω to have a special structure, namely to be unconstricted. This will allow for several exact dimension formulas.

متن کامل

A note to “imensions of spline spaces over unconstricted triangulations”[J

Let Ω be a regular triangulation of a two dimensional domain and S n(Ω) be a vector space of functions in C r whose restriction to each small triangle in Ω is a polynomial of total degree at most n. Dimensions of bivariate spline spaces S n(Ω) over a special kind of triangulation, called the unconstricted triangulation, were given by Farin in the paper [J. Comput. Appl. Math. 192(2006), 320-327...

متن کامل

Bivariate Spline Spaces on FVS-triangulations

Ming-Jun Lai Abstract. FVS-triangulation is a special but very exible triangulation. We survey the results on bivariate spline spaces over such triangulations. x

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2000