210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef
نویسندگان
چکیده
Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world’s largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with MnFe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (∼1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of frameworkforming cold-water corals if Mn-Fe oxide deposits can be removed. Where metal oxides can be removed, large M. oculata and L. pertusa skeletons provide archives for studies of intermediate water masses with an up to annual time resolution and spanning over many decades.
منابع مشابه
Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems
BACKGROUND Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functionin...
متن کاملResistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions
Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present ...
متن کاملA deep-sea slant on the molecular phylogeny of the Scleractinia.
Lophelia pertusa and Madrepora oculata are azooxanthellate corals with nearly cosmopolitan distributions. They form cold-water reefs in the upper bathyal zone on continental margins and offshore banks [A.D. Rogers, Int. Rev. Hydrobiol. 84 (1999) 315]. Lophelia is classified in the family Caryophylliidae and Madrepora in the family Oculinidae, both on the basis of skeletal morphology. Recent mol...
متن کاملPrey-capture rates in four Mediterranean cold water corals
Little is known about the basic biology of deep-water coral species. In this study, we experimentally assessed the rates of ingestion of Artemia salina adults and nauplii by the 4 Mediterranean cold water coral species Dendrophyllia cornigera, Desmophyllum cristagalli, Madrepora oculata, and Lophelia pertusa. All species ingested A. salina in adult and nauplii forms. L. pertusa showed the highe...
متن کاملCalcification rates and the effect of ocean acidification on Mediterranean cold-water corals.
Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidificat...
متن کامل