Semilocal density functional obeying a strongly tightened bound for exchange.

نویسندگان

  • Jianwei Sun
  • John P Perdew
  • Adrienn Ruzsinszky
چکیده

Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Constrained and Appropriately Normed Semilocal Density Functional.

The ground-state energy, electron density, and related properties of ordinary matter can be computed efficiently when the exchange-correlation energy as a functional of the density is approximated semilocally. We propose the first meta-generalized-gradient approximation (meta-GGA) that is fully constrained, obeying all 17 known exact constraints that a meta-GGA can. It is also exact or nearly e...

متن کامل

Gedanken densities and exact constraints in density functional theory.

Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherica...

متن کامل

Hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound: implementation via local hybrids and thermochemical assessment.

In 2009 Odashima and Capelle (OC) showed a way to design a correlation-only density functional that satisfies a Lieb-Oxford bound on the correlation energy, without empirical parameters and even without additional theoretical parameters. However, they were only able to test a size-inconsistent version of it that employs total energies. Here, we show that their alternative size-consistent form t...

متن کامل

Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory

Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlatio...

متن کامل

Energetic Study of Clusters and Reaction Barrier Heights from Efficient Semilocal Density Functionals

The accurate first-principles prediction of the energetic properties of molecules and clusters from efficient semilocal density functionals is of broad interest. Here we study the performance of a non-empirical Tao-Mo (TM) density functional on binding energies and excitation energies of titanium dioxide and water clusters, as well as reaction barrier heights. To make a comparison, a combinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 3  شماره 

صفحات  -

تاریخ انتشار 2015