Bistability in a Leaky Integrate-and-Fire Neuron with a Passive Dendrite

نویسندگان

  • Michael A. Schwemmer
  • Timothy J. Lewis
چکیده

We examine the influence of dendritic load on the firing dynamics of a spatially extended leaky integrate-and-fire (LIF) neuron that explicitly includes spiking dynamics. We obtain an exact analytical solution for this model and use it to derive a return map that completely captures the dynamics of the system. Using the map, we find that dendritic properties can significantly change the firing dynamics of the system. Under certain conditions, the addition of the dendrite can change the LIF model from type 1 excitability to type 2 excitability and induce bistability between periodic firing and the quiescent state. We identify the mechanism that causes the periodic behavior in the bistable regime as somatodendritic ping-pong. Furthermore, we use the return map to fully explore the model parameter space in order to find regions where this bistable behavior occurs. We then give physical interpretations of the dependence of the bistable behavior on model parameters. Finally, we demonstrate that the simpler two-compartment model displays qualitatively similar dynamics to the more complicated ball-and-stick model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell

Memory resistor or memristor is already fabricated successfully using current nano dimension technology. Based on its unique hysteresis, the amount of resistance remains constant over time, controlled by the time, the amplitude, and the polarity of the applied voltage. The unique hysteretic current-voltage characteristic in the memristor causes this element to act as a non-volatile resistive me...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Effects of Spike Shape on the Firing Dynamics and Synchronization Properties of Leaky Integrate and Fire Neurons with Dendritic Structure

We study the effect of spike shape and dendritic properties on neuronal firing dynamics and synchronization. To do this, we present a multi-compartment leaky integrate-and-fire model of a neuron, which can effectively capture complex dendritic trees that passively transmit current. Due to the tractability of our model, we can derive the analytic solution in both spiking and non-spiking modes. W...

متن کامل

Statistical Analysis of Neural Data: the Integrate-and-fire Neuron and Other Continuous-time State-space Models *

3 The “Fokker-Planck” equation is a partial differential equation that controls the evolution of the forward (and backward) probabilities 9 3.1 Deriving the “free” Fokker-Planck equation (no spike observations) . . . . . . 10 3.1.1 Conductance-based model . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 Computing mean firing rates in a network of GLM neurons . . . . . . 13 3.2 Incorpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012