On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion
نویسندگان
چکیده
Minimum Spanning Trees of weighted graphs are fundamental objects in numerous applications. In particular in distributed networks, the minimum spanning tree of the network is often used to route messages between network nodes. Unfortunately, while being most efficient in the total cost of connecting all nodes, minimum spanning trees fail miserably in the desired property of approximately preserving distances between pairs. While known lower bounds exclude the possibility of the worst case distortion of a tree being small, it was shown in [4] that there exists a spanning tree with constant average distortion. Yet, the weight of such a tree may be significantly larger than that of the MST. In this paper, we show that any weighted undirected graph admits a spanning tree whose weight is at most (1 + ρ) times that of the MST, providing constant average distortion O(1/ρ). The constant average distortion bound is implied by a stronger property of scaling distortion, i.e., improved distortion for smaller fractions of the pairs. The result is achieved by first showing the existence of a low weight spanner with small prioritized distortion, a property allowing to prioritize the nodes whose associated distortions will be improved. We show that prioritized distortion is essentially equivalent to coarse scaling distortion via a general transformation, which has further implications and may be of independent interest. In particular, we obtain an embedding for arbitrary metrics into Euclidean space with optimal prioritized distortion.2
منابع مشابه
Steiner Shallow-Light Trees are Exponentially Better than Spanning Ones
The power of Steiner points was studied in a number of different settings in the context of metric embeddings. Perhaps most notably in the context of probabilistic tree embeddings Bartal and Fakcharoenphol et al. [8, 9, 21] used Steiner points to devise near-optimal constructions of such embeddings. However, Konjevod et al. [24] and Gupta [22] demonstrated that Steiner points do not help in thi...
متن کاملVolume in General Metric Spaces
A central question in the geometry of finite metric spaces is how well can an arbitrary metric space be “faithfully preserved” by a mapping into Euclidean space. In this paper we present an algorithmic embedding which obtains a new strong measure of faithful preservation: not only does it (approximately) preserve distances between pairs of points, but also the volume of any set of k points. Suc...
متن کاملViewing the Rings of a Tree: Minimum Distortion Embeddings into Trees∗
We describe a (1+ε) approximation algorithm for finding the minimum distortion embedding of an n-point metric space, (X, dX), into a tree with vertex set X. The running time of our algorithm is n · (∆/ε)opt 2λ+1 parameterized with respect to the spread of X, denoted by ∆, the minimum possible distortion for embedding X into any tree, denoted by δopt, and the doubling dimension of X, denoted by ...
متن کاملA Novel Approach to Embedding of Metric Spaces
An embedding of one metric space (X, d) into another (Y, ρ) is an injective map f : X → Y . The central genre of problems in the area of metric embedding is finding such maps in which the distances between points do not change “too much”. Metric Embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, st...
متن کاملA Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کامل