Instability of turing patterns in reaction-diffusion-ODE systems

نویسندگان

  • Anna Marciniak-Czochra
  • Grzegorz Karch
  • Kanako Suzuki
چکیده

The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Stationary Patterns in Reaction-diffusion Systems

We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary ...

متن کامل

Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers.

A model reaction-diffusion system with two coupled layers yields oscillatory Turing patterns when oscillation occurs in one layer and the other supports stationary Turing structures. Patterns include "twinkling eyes," where oscillating Turing spots are arranged as a hexagonal lattice, and localized spiral or concentric waves within spot-like or stripe-like Turing structures. A new approach to g...

متن کامل

SPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL

In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...

متن کامل

Turing pattern formation in fractional activator-inhibitor systems.

Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of d representing the ratio of the diffusion constants of the in...

متن کامل

Applied Mathematics Report Amr01/7 Existence of Turing Instabilities in a Two-species Fractional Reaction-diffusion System

We introduce a two-species fractional reaction-diffusion system to model activatorinhibitor dynamics with anomalous diffusion such as occurs in spatially inhomogeneous media. Conditions are derived for Turing instability induced pattern formation in these fractional activatorinhibitor systems whereby the homogeneous steady state solution is stable in the absence of diffusion, but becomes unstab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2017