Correction of Inhomogeneous MR Images Using Multiscale Retinex
نویسندگان
چکیده
A new method for enhancing the contrast of magnetic resonance images (MRI) by retinex algorithm is proposed. It can correct the blurrings in deep anatomical structures and inhomogeneity of MRI. Multiscale retinex (MSR) employed SSR with different weightings to correct inhomogeneities and enhance the contrast of MR images. The method was assessed by applying it to phantom and animal images acquired on MRI scanner systems. Its performance was also compared with other methods based on two indices: (1) the peak signal-to-noise ratio (PSNR) and (2) the contrast-to-noise ratio (CNR). Two indices, including PSNR and CNR, were used to evaluate the performance of correction of inhomogeneity in MR images. The PSNR/CNR of a phantom and animal images were 11.8648 dB/2.0922 and 11.7580 dB/2.1157, respectively, which were higher or very close to the results of wavelet algorithm. The retinex algorithm successfully corrected a nonuniform grayscale, enhanced contrast, corrected inhomogeneity, and clarified the deep brain structures of MR images captured by surface coils and outperformed histogram equalization, local histogram equalization, and a waveletbased algorithm, and hence may be a valuable method in MR image processing.
منابع مشابه
Mr Images Enhancement Using Retinex
Magnetic resonance imaging, or MRI, is a way of obtaining very detailed images of organs and tissues throughout the body without the need for x-rays or "ionizing" radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to create images that show whether or not there is an injury, disease process, or abnormal condition present. A new ...
متن کاملColor Image Enhancement Using Multiscale Retinex and Image Fusion Techniques
Abstract—In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regio...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملContrast Enhancement of Color Images Using Improved Retinex Method
Color images provide large information for human visual perception compared to grayscale images. Color image enhancement methods enhance the visual data to increase the clarity of the color image. It increases human perception of information. Different color image contrast enhancement methods are used to increase the contrast of the color images. The Retinex algorithms enhance the color images ...
متن کاملA multiscale retinex for bridging the gap between color images and the human observation of scenes
Direct observation and recorded color images of the same scenes are often strikingly different because human visual perception computes the conscious representation with vivid color and detail in shadows, and with resistance to spectral shifts in the scene illuminant. A computation for color images that approaches fidelity to scene observation must combine dynamic range compression, color consi...
متن کامل