Link between Mass - loss and Variability Type for AGB Stars ?

نویسنده

  • Gillian R. Knapp
چکیده

We find that AGB stars separate in the 25-12 vs. 12-K color-color diagram according to their chemistry (O, S vs. C) and variability type (Miras vs. SRb/Lb). While discrimination according to the chemical composition is not surprising, the separation of Miras from SRb/Lb variables is unexpected. We show that “standard” steady-state radiatively driven models provide excellent fits to the color distribution of Miras of all chemical types. However, these models are incapable of explaining the dust emission from O-rich SRb/Lb stars. The models can be altered to fit the data by postulating different optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300-400 K) than typical condensation temperatures (800-1000 K), a possibility which is also supported by the detailed characteristics of LRS data. While such lower temperatures are required only for Oand S-rich SRb/Lb stars, they are also consistent with the colors of C-rich SRb/Lb stars. The absence of hot dust for SRb/Lb stars can be interpreted as a recent (order of 100 yr) decrease in the mass-loss rate. The distribution of O-rich SRb/Lb stars in the 25-12 vs. K-12 color-color diagram shows that the mass-loss rate probably resumes again, on similar time scales. It cannot be ruled out that the mass-loss rate is changing periodically on such time scales, implying that the stars might oscillate between the Mira and SRb/Lb phases during their AGB evolution as proposed by Kerschbaum et al. (1996). Such a possibility appears to be supported by recent HST images of the Egg Nebula obtained by Sahai et al. (1997), the discovery of multiple CO winds reported by Knapp et al. (1998), and long-term visual light-curve changes detected for some stars by Mattei (1998).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated sp...

متن کامل

The Galactic Distribution of Asymptotic Giant Branch Stars

We study the Galactic distribution of ∼10,000 Asymptotic Giant Branch (AGB) stars selected by IRAS colors and variability index. The distance to each star is estimated by assuming a narrow luminosity function and a model-derived bolometric correction. The characteristic AGB star luminosity, LAGB, is determined from the condition that the highest number density must coincide with the Galactic bu...

متن کامل

Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances

Aims. The main aim is to derive reliable mass-loss rates and circumstellar SiO abundances for a sample of 40 S-type AGB stars based on new multi-transitional CO and SiO radio line observations. In addition, the results are compared to previous results for M-type AGB stars and carbon stars to look for trends with chemical type. Methods. The circumstellar envelopes are assumed to be spherically s...

متن کامل

Mass Outflow and Chromospheric Activity of Red Giant Stars in Globular Clusters

High resolution spectra of 110 selected red giant stars in the globular cluster M15 (NGC 7078) were obtained with Hectochelle at the MMT telescope in 2005 May, 2006 May, and 2006 October. Echelle orders containing Hα and Ca II H & K are used to identify emission and line asymmetries characterizing motions in the extended atmospheres. Emission in Hα is detected to a luminosity of log(L/L⊙) = 2.3...

متن کامل

Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC

A radiative transfer code is used to model the spectral energy distributions of 57 mass-losing Asymptotic Giant Branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC) for which ISO spectroscopic and photometric data are available. As a result we derive mass-loss rates and bolometric luminosities. A gap in the luminosity distribution around Mbol = −7.5 mag separates AG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998