0 Fractional and Integer Charges from Levinson ’ s Theorem

نویسنده

  • H. Weigel
چکیده

We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson’s theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a 1 + 1 dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9 v 1 2 4 Ju l 2 00 0 Fractional and Integer Charges from Levinson ’ s Theorem

We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson’s theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a 1 + 1 dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current th...

متن کامل

Fractional Indices in Supersymmetric Theories

The regularized index introduced by Witten for supersymmetric theories and discussed by Callias for elliptic operators is studied. We relate this index to Levinson's theorem for potential scattering and clarify its meaning even when it takes on fractional values. The index can be (and usually is) half-integer whenever the continuum in the spectrum extends down to zero energy.

متن کامل

New results for fractional evolution equations using Banach fixed point theorem

In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.

متن کامل

Solitons with Integer Fermion Number

Necessary and sufficient conditions are found for any object in 3+1 dimensions to have integer rather than fractional fermion number. Nontrivial examples include the JackiwRebbi monopole and the already well studied Su-Schrieffer-Heeger soliton, both displaying integer multiples of elementary charges in combinations that normally are forbidden.

متن کامل

Proposed measurement of an effective flux quantum in the fractional quantum Hall effect.

We consider a channel of an incompressible fractional-quantum-Hall-effect (FQHE) liquid containing an island of another FQHE liquid. It is predicted that the resistance of this channel will be periodic in the flux through the island, with the period equal to an odd integer multiple of the fundamental flux quantum, φ 0 = hc/e. The multiplicity depends on the quasiparticle charges of the two FQHE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000