Non{symmetric Jack Polynomials and Integral Kernels

نویسندگان

  • H. Baker
  • P. J. Forrester
چکیده

We investigate some properties of non-symmetric Jack, Hermite and Laguerre polynomials which occur as the polynomial part of the eigenfunctions for certain Calogero-Sutherland models with exchange terms. For the non-symmetric Jack polynomials, the constant term normalization N is evaluated using recurrence relations, and N is related to the norm for the non-symmetric analogue of the power-sum inner product. Our results for the non-symmetric Hermite and Laguerre polynomials allow the explicit determination of the integral kernels which occur in Dunkl's theory of integral transforms based on reeection groups of type A and B, and enable many analogues of properties of the classical Fourier, Laplace and Hankel transforms to be derived. The kernels are given as generalized hypergeometric functions based on non-symmetric Jack polynomials. Central to our calculations is the construction of operators b and b , which act as lowering-type operators for the non-symmetric Jack polynomials of argument x and x 2 respectively, and are the counterpart to the raising-type operator introduced recently by Knop and Sahi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 61 20 03 v 1 1 D ec 1 99 6 Non – Symmetric Jack Polynomials and Integral Kernels

We investigate some properties of non-symmetric Jack, Hermite and Laguerre polynomials which occur as the polynomial part of the eigenfunctions for certain Calogero-Sutherland models with exchange terms. For the non-symmetric Jack polynomials, the constant term normalization N η is evaluated using recurrence relations, and N η is related to the norm for the non-symmetric analogue of the power-s...

متن کامل

Q-operator and Factorised Separation Chain for Jack’s Symmetric Polynomials

Applying Baxter’s method of the Q-operator to the set of Sekiguchi’s commuting partial differential operators we show that Jack’s symmetric polynomials P (1/g) λ (x1, . . . , xn) are eigenfunctions of a one-parameter family of integral operators Qz . The operators Qz are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Qzk we construct...

متن کامل

Biorthogonal Expansion of Non-Symmetric Jack Functions⋆

We find a biorthogonal expansion of the Cayley transform of the non-symmetric Jack functions in terms of the non-symmetric Jack polynomials, the coefficients being Meixner–Pollaczek type polynomials. This is done by computing the Cherednik–Opdam transform of the non-symmetric Jack polynomials multiplied by the exponential function.

متن کامل

Symmetric Jack Polynomials from Non–symmetric Theory

In (1.2) mκ(z) is the monomial symmetric function in the variables z1, . . . , zN , and the sum is over all partitions μ which have the same modulus as κ but are smaller in dominance ordering. The polynomials Pκ possess a host of special properties, and in fact form the natural basis for a class of symmetric multivariable orthogonal polynomials generalizing the classical orthogonal polynomials ...

متن کامل

Pieri - type formulas for the non - symmetric Jack polynomials

In the theory of symmetric Jack polynomials the coefficients in the expansion of the pth elementary symmetric function ep(z) times a Jack polynomial expressed as a series in Jack polynomials are known explicitly. Here analogues of this result for the non-symmetric Jack polynomials Eη(z) are explored. Necessary conditions for non-zero coefficients in the expansion of ep(z)Eη(z) as a series in no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996