Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.
نویسندگان
چکیده
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.
منابع مشابه
Subplate in a rat model of preterm hypoxia–ischemia
OBJECTIVE Hypoxia-ischemia (HI) in preterm infants primarily leads to injuries in the cerebral white matter. However, there is growing evidence that perinatal injury in preterms can also involve other zones including the cortical gray matter. In a neonatal rat model of HI, selective vulnerability of subplate has been suggested using BrdU birth-dating methods. In this study, we aimed to investig...
متن کاملNeonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex.
Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal cerebral hypoxia-ischemia (HI) on ODP. T...
متن کاملThe neurons of the transient subplate zone, considered important for the prenatal development of the cerebral cortex, were shown here to express kynurenine aminotransferase (KAT)-I from embryonic day (E)
the prenatal development of the cerebral cortex, were shown here to express kynurenine aminotransferase (KAT)-I from embryonic day (E) 16 until postnatal day (P) 7 in the rat. No other cells of brain tissue exerted KAT-I immunoreactivity during this period. From P3 on, the neurons of the subplate gave rise to KAT-I immunoreactive, varicose axons, which entered the thalamus and terminated around...
متن کاملA fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons
The subplate is a transient zone of the developing cerebral cortex through which postmitotic neurons migrate and growing axons elongate en route to their adult positions within the cortical plate. To learn more about the cellular interactions that occur in this zone, we have examined whether fibronectins (FNs), a family of molecules known to promote migration and elongation in other systems, ar...
متن کاملPrenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis
Long-term effects of prenatal hypoxia on embryonic days E14 or E18 on the number, type and localization of cortical neurons, density of labile synaptopodin-positive dendritic spines, and parietal cortex-dependent behavioral tasks were examined in the postnatal ontogenesis of rats. An injection of 5'ethynyl-2'deoxyuridine to pregnant rats was used to label neurons generated on E14 or E18 in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2015