An overlapping subzone technique for MR-based elastic property reconstruction.
نویسندگان
چکیده
A finite element-based nonlinear inversion scheme for magnetic resonance (MR) elastography is detailed. The algorithm operates on small overlapping subzones of the total region of interest, processed in a hierarchical order as determined by progressive error minimization. This zoned approach allows for a high degree of spatial discretization, taking advantage of the data-rich environment afforded by the MR. The inversion technique is tested in simulation under high-noise conditions (15% random noise applied to the displacement data) with both complicated user-defined stiffness distributions and realistic tissue geometries obtained by thresholding MR image slices. In both cases the process has proved successful and has been capable of discerning small inclusions near 4 mm in diameter. Magn Reson Med 42:779-786, 1999.
منابع مشابه
Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process.
The determination of the elastic property distribution in heterogeneous gel samples with a finite element based reconstruction scheme is considered. The algorithm operates on small overlapping subzones of the total field to allow for a high degree of spatial discretization while maintaining computational tractability. By including a Maxwellian-type viscoelastic property in the model physics and...
متن کاملThree-dimensional subzone-based reconstruction algorithm for MR elastography.
Accurate characterization of harmonic tissue motion for realistic tissue geometries and property distributions requires knowledge of the full three-dimensional displacement field because of the asymmetric nature of both the boundaries of the tissue domain and the location of internal mechanical heterogeneities. The implications of this for magnetic resonance elastography (MRE) are twofold. Firs...
متن کاملA numerical framework for interstitial fluid pressure imaging in poroelastic MRE
A numerical framework for interstitial fluid pressure imaging (IFPI) in biphasic materials is investigated based on three-dimensional nonlinear finite element poroelastic inversion. The objective is to reconstruct the time-harmonic pore-pressure field from tissue excitation in addition to the elastic parameters commonly associated with magnetic resonance elastography (MRE). The unknown pressure...
متن کاملSubzone based magnetic resonance elastography using a Rayleigh damped material model.
PURPOSE Recently, the attenuating behavior of soft tissue has been addressed in magnetic resonance elastography by the inclusion of a damping mechanism in the methods used to reconstruct the resulting mechanical property image. To date, this mechanism has been based on a viscoelastic model for material behavior. Rayleigh, or proportional, damping provides a more generalized model for elastic en...
متن کاملMagnetic resonance elastography using 3D gradient echo measurements of steady-state motion.
Magnetic resonance elastography (MRE) is an important new method used to measure the elasticity or stiffness of tissues in vivo. While there are many possible applications of MRE, breast cancer detection and classification is currently the most common. Several groups have been developing methods based on MR and ultrasound (US). MR or US is used to estimate the displacements produced by either q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 42 4 شماره
صفحات -
تاریخ انتشار 1999