Particle Filter-Based Fault Diagnosis of Nonlinear Systems Using a Dual Particle Filter Scheme
نویسندگان
چکیده
In this paper, a dual estimation methodology is developed for both time-varying parameters and states of a nonlinear stochastic system based on the Particle Filtering (PF) scheme. Our developed methodology is based on a concurrent implementation of state and parameter estimation filters as opposed to using a single filter for simultaneously estimating the augmented states and parameters. The convergence and stability of our proposed dual estimation strategy are shown formally to be guaranteed under certain conditions. The ability of our developed dual estimation method is testified to handle simultaneously and efficiently the states and time-varying parameters of a nonlinear system in a context of health monitoring which employs a unified approach to fault detection, isolation and identification is a single algorithm. The performance capabilities of our proposed fault diagnosis methodology is demonstrated and evaluated by its application to a gas turbine engine through accomplishing state and parameter estimation under simultaneous and concurrent component fault scenarios. Extensive simulation results are provided to substantiate and justify the superiority of our proposed fault diagnosis methodology when compared with another well-known alternative diagnostic technique that is available in the literature.
منابع مشابه
A Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملFault Isolation based on General Observer Scheme in Stochastic Non-linear State-Space Models Using Particle Filters
We utilize the particle filter algorithm to develop a fault isolation approach based on general observer scheme (GOS) in nonlinear and non-Gaussian systems. The proposed fault isolation scheme is based on a set of parallel particle filters each sensitive to all faults except one. The performance of the proposed approach is compared to an alternative approach called dedicated observer scheme (DO...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملFault Diagnosis Method Integrated Fuzzy Logic and Particle Filter for Nonlinear Systems
A new fault diagnosis method based on integrated fuzzy logic and particle filter for nonlinear systems is proposed to improve the accuracy of fault diagnosis. The Water Level and Temperature Control System is taken as test-bed process, with different switching states simulating possible system faults. The simulation result show that the proposed method could diagnose fault more accurately than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.08806 شماره
صفحات -
تاریخ انتشار 2016