Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at two-long-terminal-repeat-circle junctions.

نویسندگان

  • Evguenia S Svarovskaia
  • Rebekah Barr
  • Xuechun Zhang
  • Godwin C G Pais
  • Christophe Marchand
  • Yves Pommier
  • Terrence R Burke
  • Vinay K Pathak
چکیده

We previously found that azido-containing beta-diketo acid derivatives (DKAs) are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase (IN) (X. Zhang et al., Bioorg. Med. Chem. Lett., 13:1215-1219, 2003). To characterize the intracellular mechanisms of action of DKAs, we analyzed the antiviral activities of two potent azido-containing DKAs with either a monosubstitution or a disubstitution of azido groups, using single- and multiple-replication-cycle assays. Both azido-containing DKAs significantly inhibited HIV-1 infection in 293T, CEM-SS, and H9 cells (50% inhibitory concentration = 2 to 13 micro M) and exhibited low cytotoxicity (50% cytotoxic concentration = 60 to 600 micro M). Inhibition of HIV-1 IN in vivo was demonstrated by the observation that previously described L-708,906 resistance mutations in HIV-1 IN (T66I and T66I/S153Y) also conferred resistance to the azido-group-containing DKAs. In vitro assays and in vivo analysis indicated that the DKAs did not significantly inhibit the 3' processing and selectively inhibited the strand transfer reaction. In addition, quantitative PCR indicated that two-long-terminal-repeat (2-LTR) circles were elevated in the presence of the azido-containing DKAs, confirming that HIV-1 IN was the intracellular target of viral inhibition. To gain insight into the mechanism by which the DKAs increased 2-LTR-circle formation of 3'-processed viral DNAs, we performed extensive DNA sequencing analysis of 2-LTR-circle junctions. The results indicated that the frequency of deletions at the circle junctions was elevated from 19% for the untreated controls to 32 to 41% in the presence of monosubstituted (but not disubstituted) DKAs. These results indicate that the structure of the DKAs can influence the extent of degradation of viral DNA ends by host nucleases and the frequency of deletions at the 2-LTR-circle junctions. Thus, sequencing analysis of 2-LTR-circle junctions can elucidate the intracellular mechanisms of action of HIV-1 IN inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular DNA of human immunodeficiency virus: analysis of circle junction nucleotide sequences.

During infection of cells by retroviruses, some of the nonintegrated viral DNA can be found as a circular form containing two tandem, directly repeated long terminal repeats. The nucleotide sequence at the point where the long terminal repeats join (the circle junction) can be used to deduce the terminal nucleotides of the linear form of the viral DNA. Comparison of the termini of linear viral ...

متن کامل

Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents.

We have previously shown that styrylquinolines (SQLs) are integrase inhibitors in vitro. They compete with the long terminal repeat substrate for integrase. Here, we describe the cellular mode of action of these molecules. We show that SQLs do not interfere with virus entry. In fact, concentrations of up to 20 times the 50% inhibitory concentration did not inhibit cell-to-cell fusion or affect ...

متن کامل

Inhibition of human immunodeficiency virus type 1 integrase by 3'-azido-3'-deoxythymidylate.

The effects of 3'-azido-3'-deoxythymidine (AZT) and three of its intracellular metabolites, azido- thymidine mono-, di-, and triphosphates, on the human immunodeficiency virus type 1 integrase have been determined. AZT mono-, di-, and triphosphate have an IC50 for integration between 110 and 150 microM, whereas AZT does not inhibit the integrase. The inhibition by AZT monophosphate can be parti...

متن کامل

Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid.

The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are r...

متن کامل

Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction.

Lentiviral vectors derived from human immunodeficiency virus type 1 (HIV-1) show great promise as gene carriers for future gene therapy. Insertion of a fragment containing the central polypurine tract (cPPT) in HIV-1 vector constructs is known to enhance transduction efficiency drastically, reportedly by facilitating the nuclear import of HIV-1 cDNA through a central DNA flap. We have studied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 7  شماره 

صفحات  -

تاریخ انتشار 2004