The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes

نویسندگان

  • Masahito Hayashi
  • Damian Markham
  • Mio Murao
  • Masaki Owari
  • Shashank Virmani
چکیده

Articles you may be interested in Geometric descriptions of entangled states by auxiliary varieties Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates In this paper for a class of symmetric multiparty pure states, we consider a conjecture related to the geometric measure of entanglement: " for a symmetric pure state, the closest product state in terms of the fidelity can be chosen as a symmetric product state. " We show that this conjecture is true for symmetric pure states whose amplitudes are all non-negative in a computational basis. The more general conjecture is still open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximally entangled symmetric state in terms of the geometric measure

The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calcula...

متن کامل

Geometric Measure of Quantum Entanglement for Multipartite Mixed States

The geometric measure of quantum entanglement of a pure state, defined by its distance to the set of pure separable states, is extended to multipartite mixed states. We characterize the nearest disentangled mixed state to a given mixed state with respect to the geometric measure by means of a system of equations. The entanglement eigenvalue for a mixed state is introduced. And we show that, for...

متن کامل

Additivity and non-additivity of multipartite entanglement measures

We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. Firstly, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interest have this propert...

متن کامل

An Entanglement Study of Superposition of Qutrit Spin-Coherent States

Considering generalized concurrence as the criterion of entanglement, we study entanglement properties of superposition of two qutrit coherent states, as a function of their amplitudes. These states may attain maximum entanglement or no entanglement at all, depending on the choice of the parameters involved. The states revealing maximum entanglement also display the maximum violations of the Be...

متن کامل

Fidelity of recovery, geometric squashed entanglement, and measurement recoverability

This paper defines the fidelity of recovery of a tripartite quantum state on systems A, B, and C as a measure of how well one can recover the full state on all three systems if system A is lost and a recovery operation is performed on system C alone. The surprisal of the fidelity of recovery (its negative logarithm) is an information quantity which obeys nearly all of the properties of the cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014