Unidirectional Photoreceptor-to-Müller Glia Coupling and Unique K+ Channel Expression in Caiman Retina

نویسندگان

  • Astrid Zayas-Santiago
  • Silke Agte
  • Yomarie Rivera
  • Jan Benedikt
  • Elke Ulbricht
  • Anett Karl
  • José Dávila
  • Alexey Savvinov
  • Yuriy Kucheryavykh
  • Mikhail Inyushin
  • Luis A. Cubano
  • Thomas Pannicke
  • Rüdiger W. Veh
  • Mike Francke
  • Alexei Verkhratsky
  • Misty J. Eaton
  • Andreas Reichenbach
  • Serguei N. Skatchkov
چکیده

BACKGROUND Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and subcellular specification of Na,K-ATPase alpha and beta isoforms in the postnatal development of mouse retina.

The Na,K-ATPase is a dominant factor in retinal energy metabolism, and unique combinations of isoforms of its alpha and beta subunits are expressed in different cell types and determine its functional properties. We used isoform-specific antibodies and fluorescence confocal microscopy to determine the expression of Na,K-ATPase alpha and beta subunits in the mouse and rat retina. In the adult re...

متن کامل

Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration.

Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression...

متن کامل

Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina.

The adult zebrafish retina possesses a robust regenerative response. In the light-damaged retina, Müller glial cell divisions precede regeneration of rod and cone photoreceptors. Neuronal progenitors, which arise from the Müller glia, continue to divide and use the Müller glial cell processes to migrate to the outer nuclear layer and replace the lost photoreceptors. We tested the necessity of M...

متن کامل

Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina.

Müller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Müller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Müller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then ad...

متن کامل

Accumulation of glial fibrillary acidic protein in Müller radial glia during retinal degeneration.

Müller radial glia accumulate glial fibrillary acid protein (GFAP) in response to retinal injuries. We have studied the changes in cellular localization of GFAP in genetically caused retinal dystrophy in strains of cat and mouse: Abyssinian cats with progressive retinal dystrophy, and mice homo- and heterozygous for the retinal degeneration (rd) and retinal degeneration slow (rds) genes. The fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014