Visualization of plant cell wall lignification using fluorescence-tagged monolignols
نویسندگان
چکیده
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.
منابع مشابه
Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly.
Plant lignification is a tightly regulated complex cellular process that occurs via three sequential steps: the synthesis of monolignols within the cytosol; the transport of monomeric precursors across plasma membrane; and the oxidative polymerization of monolignols to form lignin macromolecules within the cell wall. Although we have a reasonable understanding of monolignol biosynthesis, many a...
متن کاملLaccases direct lignification in the discrete secondary cell wall domains of protoxylem.
Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsi...
متن کاملA click chemistry strategy for visualization of plant cell wall lignification.
Bioorthogonal click chemistry was commissioned to visualize the plant cell wall lignification process in vivo. This approach uses chemical reporter-tagged monolignol mimics that can be metabolically incorporated into lignins and subsequently derivatized via copper-assisted or copper-free click reactions.
متن کاملNeighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous.
Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignif...
متن کاملLignification in poplar tension wood lignified cell wall layers.
The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignificatio...
متن کامل