LG-Trader: Stock trading decision support based on feature selection by weighted localized generalization error model
نویسندگان
چکیده
Stock trading is an important financial activity of human society. Machine learning techniques are adopted to provide trading decision support by predicting the stock price or trading signals of the next day. Decisions are made by analyzing technical indices and fundamental analysis of companies. There are two major machine learning research problems for stock trading decision support: classifier architecture selection and feature selection. In this work, we propose the LG-Trader which will deal with these two problems simultaneously using a genetic algorithm minimizing a new Weighted Localized Generalization Error (wL-GEM). An issue being ignored in current machine learning based stock trading researches is the imbalance among buy, hold and sell decisions. Usually hold decision is the majority in comparison to both buy and sell decisions. So, the wL-GEM is proposed to balance classes by penalizing heavier for generalization error being made in minority classes. The feature selection based on wL-GEM helps to select most useful technical indices among choices for each stock. Experimental results demonstrate that the LG-Trader yields higher profits and rates of return in both stock and index trading. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Ranking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملQuantifying StockTwits semantic terms' trading behavior in financial markets: An effective application of decision tree algorithms
Growing evidence is suggesting that postings on online stock forums affect stock prices, and alter investment decisions in capital markets, either because the postings contain new information or they might have predictive power to manipulate stock prices. In this paper, we propose a new intelligent trading support system based on sentiment prediction by combining text-mining techniques, feature...
متن کاملRanking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملHybrid Intelligent Decision Support Systems for Selection of Alternatives in Stock Trading
The dissertation presents Hybrid Intelligent Decision Support Systems (DSS) for the selection of alternatives (companies, stocks, and company groups) in stock trading under uncertainty. This study proposes a framework including three models using Hybrid Intelligent DSS. The framework aims to optimize trading decisions in the selection of appropriate alternatives and reduce risky decisions. This...
متن کاملBalancing Recall and Precision in Stock Market Predictors Using Support Vector Machines
Computational finance is one of the fields where machine learning and data mining have found in recent years a large application. Neverthless, there are still many open issues regarding the predictability of the stock market, and the possibility to build an automatic intelligent trader able to make forecasts on stock prices, and to develop a profitable trading strategy. In this paper, we propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 146 شماره
صفحات -
تاریخ انتشار 2014