Expression of cystic fibrosis transmembrane regulator Cl- channels in heart.

نویسندگان

  • P C Levesque
  • P J Hart
  • J R Hume
  • J L Kenyon
  • B Horowitz
چکیده

Cyclic AMP (cAMP)-dependent chloride channels modulate changes in resting membrane potential and action potential duration in response to autonomic stimulation in heart. A growing body of evidence suggests that there are marked similarities in the properties of the cAMP-dependent chloride channels in heart and cystic fibrosis transmembrane regulator (CFTR) chloride channels found in airway epithelia or in cells expressing the CFTR gene product. We isolated poly A+ mRNA from rabbit ventricle and converted it to cDNA for amplification using the polymerase chain reaction (PCR). A fragment corresponding to the nucleotide-binding domain 1 (NBD1) of the CFTR transcript was cloned. Comparison of the amino acid sequence of NBD1 of human CFTR with the deduced sequence of the rabbit heart PCR product indicated 98% identity. Northern blot analysis, using the heart amplification product as a cDNA probe, demonstrated expression of homologous transcripts in human atrium, guinea pig and rabbit ventricle, and dog pancreas. Xenopus oocytes injected with poly A+ mRNA extracted from rabbit and guinea pig ventricle or dog pancreas expressed robust time-independent chloride currents in response to an elevation of cAMP. We conclude that CFTR chloride channels are expressed in heart and are responsible for the observed cAMP-dependent chloride conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Communications Expression of Cystic Fibrosis Transmembrane Regulator Cl- Channels in Heart

Cyclic AMP (cAMP)-dependent chloride channels modulate changes in resting membrane potential and action potential duration in response to autonomic stimulation in heart. A growing body of evidence suggests that there are marked similarities in the properties of the cAMP-dependent chloride channels in heart and cystic fibrosis transmembrane regulator (CFITR) chloride channels found in airway epi...

متن کامل

Analysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.

  Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...

متن کامل

CFTR chloride channels in human and simian heart.

OBJECTIVES The cAMP-dependent Cl- conductance in heart is believed to be due to cardiac expression of the cystic fibrosis transmembrane conductance regulator (CFTR). While CFTR expressed in rabbit and guinea-pig heart (CFTRcardiac) is an alternatively spliced isoform of the epithelial gene product, little information is known regarding possible expression of CFTR in primate heart. In this study...

متن کامل

Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes.

The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and compo...

متن کامل

Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 71 4  شماره 

صفحات  -

تاریخ انتشار 1992