Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms.
نویسندگان
چکیده
The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain.
منابع مشابه
Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory.
Acid-sensing ion channel-1a (ASIC1a) is localized in brain regions with high synaptic density and is thought to contribute to synaptic plasticity, learning, and memory. A prominent hypothesis is that activation of postsynaptic ASICs promotes depolarization, thereby augmenting N-methyl-d-aspartate receptor function and contributing to the induction of long-term potentiation (LTP). However, evide...
متن کاملAcid‐sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons
KEY POINTS The hippocampal CA1 region is highly vulnerable to ischaemic stroke. Two forms of AMPA receptor (AMPAR) plasticity - an anoxic form of long-term potentiation and a delayed increase in Ca(2+) -permeable (CP) AMPARs - contribute to this susceptibility by increasing excitotoxicity. In CA1, the acid-sensing ion channel 1a (ASIC1a) is known to facilitate LTP and contribute to ischaemic ac...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملExtracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a.
Acid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway fo...
متن کاملAcid-sensing channels in human bladder: expression, function and alterations during bladder pain syndrome.
PURPOSE We examined the possible role of H(+) activated acid-sensing ion channels in pain perception. We characterized expression in bladder dome biopsies from patients with bladder pain syndrome and controls, in cultured human urothelium and in urothelial TEU-2 cells. MATERIALS AND METHODS Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016