Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes
نویسندگان
چکیده
The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics.
منابع مشابه
Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications
Since the introduction of the cosmic-ray neutron method for soil moisture estimation, numerous studies have been conducted to test and advance the accuracy of the method. Almost 200 stationary neutron detector systems have been installed worldwide, and roving systems have also started to gain ground. The intensity of low-energy neutrons produced by cosmic rays, measured above the ground surface...
متن کاملMeasurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources
[1] We present here a simple and robust framework for quantifying the effective sensor depth of cosmic ray soil moisture neutron probes such that reliable water fluxes may be computed from a time series of cosmic ray soil moisture. In particular, we describe how the neutron signal depends on three near-surface hydrogen sources: surface water, soil moisture, and lattice water (water in minerals ...
متن کاملThe COsmic-ray Soil Moisture Observing System (COSMOS): a non-invasive, intermediate scale soil moisture measurement network
Soil moisture at a horizontal scale of around 700 m and depths of 15 to 70 cm can be inferred from measurements of cosmic-ray neutrons that are generated within soil, moderated mainly by the hydrogen atoms in water, and emitted back to the atmosphere. The intensity of the resulting field of neutrons above the ground is sensitive to water content changes, largely insensitive to soil chemistry an...
متن کاملThe COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the c...
متن کاملLarge Area Soil Moisture Measurement Using Cosmic Rays Neutrons: The Australian CosmOz Network
Field measurement of soil moisture is undertaken traditionally using point based measurement techniques such as neutron probes or time domain reflectrometry (TDR). Recently, a new technique has been developed that can be used to derive soil moisture at larger spatial scales by measuring neutrons that are generated by cosmic rays within the air and soil, and emitted back into the atmosphere. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017