Algebras of Curvature Forms on Homogeneous Manifolds
نویسندگان
چکیده
Let C(X) be the algebra generated by the curvature two-forms of standard holomorphic hermitian line bundles over the complex homogeneous manifold X = G/B. The cohomology ring of X is a quotient of C(X). We calculate the Hilbert polynomial of this algebra. In particular, we show that the dimension of C(X) is equal to the number of independent subsets of roots in the corresponding root system. We also construct a more general algebra associated with a point on a Grassmannian. We calculate its Hilbert polynomial and present the algebra in terms of generators and relations. 1. Homogeneous Manifolds In this section we remind the reader the basic notions and notation related to homogeneous manifolds G/B and root systems, as well as fix our terminology. Let G be a connected complex semisimple Lie group and B its Borel subgroup. The quotient space X = G/B is then a compact homogeneous complex manifold. We choose a maximal compact subgroup K of G and denote by T = K ∩ B its maximal torus. The group K acts transitively on X. Thus X can be identified with the quotient space K/T . By g we denote the Lie algebra of G and by h ⊂ g its Cartan subalgebra. Also denote by gR ⊂ g the real form of g such that i gR is the Lie algebra of K. Analogously, hR = h ∩ gR and i hR is the Lie algebra of the maximal torus T . The root system associated with g is the set ∆ of nonzero vectors (roots) α ∈ h∗ for which the root spaces gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h} are nontrivial. Then g decomposes into the direct sum of subspaces
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملar X iv : m at h / 99 01 07 5 v 1 [ m at h . A G ] 1 9 Ja n 19 99 ALGEBRAS OF CURVATURE FORMS ON HOMOGENEOUS MANIFOLDS
Let C(X) be the algebra generated by the curvature two-forms of standard holomorphic hermitian line bundles over the complex homogeneous manifold X = G/B. The cohomology ring of X is a quotient of C(X). We calculate the Hilbert polynomial of this algebra. In particular, we show that the dimension of C(X) is equal to the number of independent subsets of roots in the corresponding root system. We...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملRelative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کامل