Tip-enhanced Raman mapping with top-illumination AFM.

نویسندگان

  • K L Andrew Chan
  • Sergei G Kazarian
چکیده

Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes

Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated b...

متن کامل

Chemical Imaging on the Nanoscale - Top-Illumination Tip-Enhanced Raman Spectroscopy.

A top illumination system for tip-enhanced Raman spectroscopy (TERS) in a gap-mode configuration is presented here, which allows chemical analysis of sample surfaces with a lateral resolution beyond the optical diffraction limit and optical detection of very small amounts of analyte molecules (down to single molecule sensitivity). The technique combines the high resolution of an STM with label-...

متن کامل

Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials

Biological materials can be highly heterogeneous at the nanometer scale. The investigation of nanostructures is often hampered by the low spatial resolution (e.g. spectroscopic techniques) or very little chemical information (e.g. atomic force microscopy (AFM), scanning tunneling microscopy (STM)) provided by analytical techniques. Our research focuses on combined instruments, which allow the a...

متن کامل

Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy

In Tip-Enhanced Raman Spectroscopy (TERS) a metal (or metallized) sharp tip is used to enhance the electromagnetic field by a localized surface-plasmon excitation. Two different modes – atomic force mode (AFM) and scanning tunneling mode (STM) – together with their respective types of probe tips are used in TERS experiments. We have compared the efficiency in enhancing the Raman signal on a thi...

متن کامل

Visualising the strain distribution in suspended two-dimensional materials under local deformation

We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 17  شماره 

صفحات  -

تاریخ انتشار 2011